AD/A-006

PARAMETRIC INTEGER PROGRAMMING

Robert M. NAUSS

California University

Prepared for:

Office of Naval Rescarch

January 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

e IR RO A ENAY X e

(i Utladint i o AR MRS el Afob e e 4 7

" Security Classification @z' OOé w/

DOCUMENT CONTROL DATA - R&D

(Security clesseilication ol title body ol adairact end indexing minotation munt be entered when the overell report 1a clasnilind)

t ORIGINATING ACTIVITY (Corporate suthor) 24 RCPOMY SECURITY C LASSIFICATYION
Western Management Science Institute Unclassified
University of California, Los Angeles 26 amour

) NEPOAT TITLE

PARAMETRIC INTEGER PROGRAMMING

4 DEICRIPTIVE NOTES (Type of report and Inclusive datea)
Working Paper

S AUTHOR(S) (Last name. firat name. init1al)

Nauss, Robert M.

¢ REPORT DATE 7a YOTAL NO OF PAGFEFS 75 NO OF REFS
January, 1975 /5 33
08 CONTRACTY OR GRANT NO 90 ORMIGINATOR'S REPORT NUMBEN(S)
N00014-69-A-0200-4042/
b PROJECT NO Working Paper No. 2256 *
< b OTHEN n,!on? NO(S) (Any other numbers that may be sseigned
this report,
d e . e

104V APL ARILITY/LIMITATION NOJSOT

-l

—_— o
1t suPPL tmnuv NOTES 12 SPONSORING MILITARY ACTIVITY

13 ABSTRACT

A parametiic integer linear program (PILP) may be defined as a family cf
closely related !nteger linear programs (ILP). Within this definition we incor-
porate not only comtinuous scalar parameterizations but also finite parameteriza-
tions. These may include an ILP with a finite number of objective functions or
right hand sides or constraint matrices or any combination of these.

A general framework for PILP is presented. It begins by cutlining the need
for PILP algorithms. Basic solution methodologies are explained ani two rudimen-
tary approaches for the PILP are stated. Theoretical properties for special
parameterizations are proved, and techniques for improving algorithmic efficiency
are discussed. The framework concludes with an examination of underlying factors
which intimately relate to the schecduling of solution priorities in a PILP algo-
rithm.

Three special PILP problem classes are studied including the 0-1 knapsack,
generalized assignment, and capacitated facility location problems. Algorithms
ar: presented, cimputational results are cited, and conclusions are drawn con-
cerning the most efficient approaches. As a by-product of these PILP algorithms,
efficient algorithms for the corresponding ILPs in each problem class are also
developed. Finally, an approach for the general PILP is proposed, and directions
for future research are given.

Reproducrd by

NATIONAL TECHNICAL

|NFQRMAT|OT\£ SERVICE
U S Departmer t o f Commeren
DD R oD 1473 7101-807-6890 B PRKES SUBIE:I IU IIIING..

/ Security Classification

WESTERN MANAGEMENT SCIENCE INSTITUTE

University of California, Los Angeles

Working Paper No. 226

PARAMETRIC INTEGER PROGRAMMING

Robert M. Nauss

January, 1975

(e el Lcioddias ki 0 Ll datiters s S aio o boutie i o die AL bl

T WIIRAETY! AN RAECRRIN ~mww-www?ﬁ*ﬁ?

UNIVERSI.Y OF CALIFORNIA

{ Los Angeles

i Parametric Integer Programming

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Management

by

Robert Milton Nauss

1974

iy 2

TR e e e T [T BN P P T T g e rre ey feh i s aidd

oo st i

o -

oy

o

The dissertaticn of Robert Milton Nauss is approved, and it is

oy

acceptable in quality for publication on microfilm.

e

yz}(mz ;7/ %/fé/

Bruce Millef

Charles R. Scherer

(el Su 250

d Erlenkotter

Glenn W. Graves

(T 7 Aot ’f

Arthur M, Geoffrion, Committee Chairman

s ;

| f
University of California, Los 2ngeles

s 1974 §

' ii 4

M iy ot i el bt s T —— . e g i
Y ¥ PN YOV . N et e T

oty AT TR NS H:ﬂm‘_

ACKNOWLEDGMENTS « 4 + & .

VITA. .

ABSTRAcr - L] L] . . .

I.

II.

III.

Iv.

TABLE OF CONTENTS

.« e . . e o @ "« s e s e @ e 5 o s @ . - e ® & e o 9+ o

INTRODUCTION . & & ¢ o ¢ o o o o o o o o s o o s s o o
A. The Need for PIILP Algorithms
B. Basic Methodologies for Solving the PILP

l. Cutting Plane Approach « « « + « &

2. Branch and Bound Approach., ¢« « « « . .

CHARACTERISTICS AND PROPERTIES OF PARTICULAR
PARAMETERIZATIONS. . ¢ ¢ ¢ ¢ ¢ & & ¢ o o o« o o o o « s

A. Transformation of a Continuous Pure PILP to a Finite

PILP . ¢« ¢« ¢ o « o s o o s o o o o o s o o o o o @
B. Theoretical Properties for Right Hand Side and

Constraint Matrix Parameterizations.
C. Theoretical Properties for Objective Function

Parameterizations. . . « « « o o+ o 2 o s o & & - @

PROBLEM DEPENDENT TECHNIQUES FOR IMPROVING ALGORITHMIC
EFFICIENCY ¢ v v o o o o « o o s o o o o o o

SCHEDULING SOLUTION PRIORITIES FOR PILPS

THE PARAMETRIC 0-1 KNAPSACK PROBLEM. . . .+ « .« « &« « &
A. An Algorithm for the 0-1 Knapsack Problem.

B. The 0-1 Knapsack Problem with a Finite Number of Right

HandySiides o ehal o o i s s s e Bl e ls e &
C. The 0-~1 Knapsack Problem with a Finite Number of

Objertive Functions. . . . ¢ ¢ v ¢ ¢ ¢ &+ o o o o &

D. The 0-1 Knapsack Problem with a Continuous Objective

Function Parameterization. « ¢« « « « .« .

Tables A ~ F . ¢ & ¢ ¢« ¢ ¢ o o o o o s s « o o o o » »

iii

14

17

18

19

21

30

35

41
42

48

59

60
62

s e T

THE PARAMETRIC GENERALIZED ASSIGNMENT PROBLEM. . ., 69
A. An Algorithm for the Generalized Assignment Problem. . . 70
B. The Generalized Assignment Problem with a Finite Number ﬂ
of Right Hand Sides. . . . « « « « v ¢« v « ¢ ¢« 4 o « « . 16 1
C. The Generalized Assignment Problem with a Finite Number |
of Objective Functions . . « . « « + + « « « + + « +» . . B85
D. The Generalized Assignment Problem with a Continuous
Objective Function Parameterization. 88

TableS G = L v v v v v ¢ o o o o o o o o o s o o o o o s .« 9

VII. THE PARAMETRIC CAPACITATED FACILITY LOCATION PROBLEM 100
A. An Algorithm for the Capacitated Facility Location
Problems: N 4NN SN AR I B I B R SR R B S SR O

|

B. An Interactive Approach for the Parametric Capacitated
Facility Location Problem. « + + ¢ ¢« « « . . . 113
Tables M = N v v v o o o o o o o o o 2 o o o o o o 124

TR

VIII. EXTENSIONS TO THE GENERAL PILP AND AREAS FOR FUTURE RESEARCH 128

IR

.] A. A Solution Method for the General PILP 128

B. Future Research. . . . v « v o o o o o o o « o o o« o« o « 135

BIBLIOGRAPHY. + & & ¢ v v o o v o o o o o o o o o v o o o o v . 138 ;

et e

R Py)

.

iv

et isanis i N i it ot e il

o AT AN gy

ACKNOWLEDGMENTS

I wish to express my gratitude to my advisor, Professor Arthur M.

Geoffrion. He suggested the topic of this dissertation and was instru-
mental in laying the groundwork for much of what appears in this volume.
His criticisms and suggestions in the course of our many discussions

F ¢ were both insightful and inspiring.

£ This research was partially supported by the National Science

Foundation under Grant GP-36090X and ‘the Office of Naval Research under

Contract N00014-69-A-0200-4042. Partial support was also provided bv

a University of California Regenis' Fellowship. The Western Managemeut

Science Institute provided secretarial and reproduction services, and

AT

the Campus Computing Network at UCLA supplied a portion of the computer

support.

b
¢
3
}

TP

hetie g an

Bbedh it s o il nd e ot ot s b it it il s e o o i bl

7 A, 1 P U YT T rapenas -0/ YT ST VIR IHI WYY TR IS 5 - A R,

VITA

.

1965-1970--Engineering Co-op Student, McDonnell Douglas Corporation,
St. Louis, Missouri

1970--B.S., Northwestern University

1970-1972--National Science Foundation Traineeship
1972--M.S., Cornell University

1972-1974--Univercity of California Regents' Fellowship

1973-1974--Research Assistant, Graduate School of Management, University
of cCalifornia, Los Angeles

PUBLICATION

Nemhauser, G.L., Trotter, L.E.,Jr., and Nauss, R.M., "Set Partitioning
and Chain Deccmposition," Management Science, Vol. 20, No. 11 (July
1974), pp. 1413-1423.

vi

okt T et o geTes

TR TR N Y T T -

merae Eoton oo L ondh o

|
|

Dadicdi bt Mo e ey o

ihaa 0 uat) RAGR Iab des e nitn B < badaiis 9 8 /AL U MDY MR Al 20 it A o te 2 i £ E i b i & s i T VESTYLT

L NPT R 9

ABSTRACT OF THE DISSERTATION

Parametric Integer Programming

by

Robert Milton Nauss
Doctor of Philosophy in Management
University of California, Los Angeles, 1974

Professor Arthur M. Geoffrion, Chairman

A parametric integer linear program (PILP) may be defined as a
family of closely related integer linear programs (ILP). Within this
definition we incorporate not only continuous scalar parameterizations
but also finite parameterizations. These may include an ILP with a
finite number of objective functions or right hand sides or constraint
matrices or any combination of thecse:.

A general framework for PILP is presented. It begins by outlining
the need for PILP algorithms. Basic solution methodologies are ex-
plained and two rudimentary approaches for the PILP are stated. The-
oretical properties for special parameterizations are proved, and
techniques for improving algorithmic efficiency are discussed. The
framework concludes with an examination of underlying factors which
intimately relate to the scheduling of solution priorities in a PILP
algorithm.

Three special PILP problem classes are studied including the 0-1

knapsack, generalized assignment, and capacitated facility location
problems. Algorithms are presented, computational results are cited, E

and conclusions are drawn concerning the most efficient approaches.

SRR i s o AR

o fata

vii

T IRETE TP T (L% o A anb e s PN TR YRy cbabiinad Eleine Lok dan g o

by e T g e DR T IR SR RGP U i

As a by-product of these PILP algori-hms, eftjcient algorithms for the

corresponding ILPs in each problem class are also developed. Finally,

an approach for the general PILP is proposed, and directions for future

research are given.
8
7
).
1
i
;
4
1
:
1
L
4
b

SRS R T IN AT

5
I' ‘o
1 4
4
3
3
, i
g 1
, i
3 viii 1
]
: y

o o B i

I. INTRODUCTION

A parametric inteyer linear program (PILP) may be defined as a
family of closely related integer linear programs (ILP). Parametric
linear programming (PLP) theory is firmly entrenched, and a parametric
capability is provided in most commercial linear programming (LP)
packages. PILP, on the other hand, is a virgin field. This is natural
since until recently methods for solving ILPs were not efficient,
However in the past few years the state-of-the-art for ILP has blossomed
forth to such an extent that research on PILP solution techniques may
be undertaken with some feeling of optimism.

PLP is traditionaily thought of as varying a scalar parameter
continuously over a specified range, resulting in a continuum of
objective functions or of right hand sides (resource allocations).
However, it is not used as extensively as one might think. This is
partly due to the fact that the solution output generally contains much
more information than management wants or needs, and partly because
very small changes in the data are often not of interest. Rather,
management generally desires the solution to a finite number of revised
models. In the interest of solving the entire collection of problems
efficiently, the analyst generally uses the optimal LP basis for one
problem as an initial basis for a revised problem.

Analogously, while continuous parameterization is of some interest
in rILP, the definition of PILP should be expanded to include finite
parameterizations. Specifically, one may vory a parameter over a fixed

number of points instead of over a continuous range. This results in a

PRI P

a
f
:
A

RAETY

PR e

finite number of objective functions or right hand sides. An example
is a capital budgeting problem which is modeled as an ILP. Since the
precise cost of capital is rarely known (generally an educated guess

is made), a logicali approach would be to generate an objective function
for each ¢f a series of estimated coats of capital. Using this €inite
set of objective functions, a finite number of ILPs (which heretofore
had to be solved independently) is transformed into a PILP with a finite
number of objective functions. Another type of parameterization which
should be included in the definition is varying the objective function,
the right hand side, and/or the constraint coefficients simultaneously.
Varying the constraint coefficients could also be defined to include
adding or deleting variables and constraints. PILP, then, may be
divided into three broad categories:

+ parameterization over a finite number of points (including
simultaneous changes in the objective function, right hand
side, and constraint coefficients)

-+ one parameter varied continuously over a specified --ange

* two or more parameters varied continuously over specified
ranges.

Due to the increased complexity of the third category we shall address
only the first two.

Mathematical representations of parameterizations for the two

categories to be addressed are given below. Let x be an n-vector, b

an m-vector, and A an mxn matrix.

TR

derag s

R

Y T

i e i

2
3
| &

T

FCRR FEHE T, W

e —r reTeTwETTYY ot is o i W e i) ke i dasd ni ataliedebin 2 il
b Rl bt oy Ty AR e S W JTENTI A in e R 7

Finite parameterization

For k = 1,...,K solve:
min (c + fk)x
(A + Dk)x > (b + rk)
x, integer, j € J

p
where fk' Dk' rk are conformable with ¢, A, b respectively.

Continuous parameterizations
For v 6 € (0,1) solve:
min (c + 68f)x
Ax > b
xj integer, j ¢ J
and for ¥ 8 € [0,1] solve:
min ox
AXx > b + 6Or

xj integer, j € J

where £, r are conformable with c, b respectively and where 0 is a

scalar. Of course, in the finite case the parameterization may be

confined to only the objective function, or tne right hand side, or
the constraint matrix.

At this point some mention should be made of work which has already
been done in this field. It appears that Rocdman [1972,1973) was the
first to do any computational work in the area. Basically he has devised
a method for one-at-a-time (e.g., one cost coefficient or one re:ource)
sensitivity analysis utilizing the fathomed nodes in the branch and bound

tree generated for the ILP. Bowman [1974) has addressed ILP sensitivity

e

e R

LA e ot i oty ot
? r= w LA Lot T8 s s 1 T T R T Ty,

~ - LS | e th -

Lk i

MN‘W?M‘WM{! AP AT AL Urpr 21, 75 N -

from a group theoretic point of view. However, the practicality of his

method has not yet been demonstrated. Noltemeier (1970]) has done some

theoretical work in the area of ILP sensitivity, but he has not performed }

Ll

any computational studies. Piper and Zoltners [1973b] have attacked the

prublem of solving closely related ILPs by findiny a set of the k best

e nadbuie = oo

ST el T

feasible solutions to an ILP. Sufficiency tests are proposed, which if

? passed, assure that an cptimal solution to a revised ILP remains in the

3 set. A recent paper by Radke [1974] is concerned with continuity theory
% in mixed integer programming. While it is essentially a theoretical
: treatise, it does prescribe methods for eliminating the bogey of dis-

continuity in some problems.

Riaaaas aciam et

The plan >f the paper is as follows. 1In the remainder of this

chapcer the iotivation for studying PILP is outlined by presenting types
of analysis 1-~ which a PILP formulation may be effective. Basic
solution methodi\caies for PILP are presented, and two rudimentary
algorithms are giv:n. Characteristics and properties of special

parameterizations are given in chapter 1I, and in chapter III problem

dependent techniques for improving algorithmic performance are set forth.
Factors affecting the scheduling of solution priorities for the PILP are
3 examined in chapter IV, and three different priority schemes are pre-

sented. In chapters V, VI, and VII the ideas and results of chapters

II-IV are applied to special problem classes including the 0-1 knapsack

problem, the generalized assignment problem, and the capacitated facility

location problem. Algorithms are stated, computational results cited,

and conclusions drawn concerning the most efficient algorithms for each

14

problem class. Finally in chapter VIII an approach for the general FILP

is proposed, and directions for future research are given.
We advise the reader that problem notations remain valid for

individual chapters only.

A. The Need for PILP Algorithms

Oftentimes in practical ILP applications, finding an "optimal”
solution to a model is not the only requirement. Managers may also be
interested in solutions which are close to optimal, or they may want to
know what happens if a certain change is made in the model. Some cost
coefficients or right hand sides may not be known with certainty, and
hence the manager must know how the optimal solution behaves as these
parameters are varied in the model. Rarely, then, is an optimal solution
sufficient for the needs of management. In most applications various
types of analysis must be done, and many of them can be classified under
the broad term, PILP. This is because they satisfy the criteria of
being a family of closely related ILPs. Quite a few types of analysis
are mentioned in Geoffrion [1974a]. These along with some others are
given below.

» Sensitivity analysis: When problew data in an ILP is not known pre-

cisely, point estimates must be used in the model. Varying this data
over a range of estimates allows management to determine how sensitive
an optimal solution and value are to changes in the data.

- Shadow price analysis: In every linear programming solution, shadow

prices are available from the final tableau. These prices reflect the
value of an extra unit of resource. Unfortunately, reliable shadow

prices are not available in ILP. By varying a right hand side coeffi-

b cebo o it Lt el ol il Sl At e N i i S v g e

cient and observing how the optimal value changes, it is possible to
get an approximation of the value of an evtra unit of a particular
resource.

+ Tradeoff analysis: When two or more criteria are reflected in a

model, management must know the tradeoffs involved in balaicing one
criteria against another. For example, a tradeoff curve between
customer service and total cost in a distribution system depicts how a
change in customer service affects total distribution cost. Such an
analysis would be done by varying the customer service parameters in
the model over a suitable range.

+ Continuity analysis [Radke 1974]: 1In linear programming, continuity

of the optimal solution value with respect to problem data is generally
taken for granted. 1In integer programming, however, serious disconti-
nuities are more likely to occur. The analyst is interested in finding
sufficient conditions for which continuity holds. Failing this, he
would like to identify points of serious discontinuity. If a disconti-
nuity exists and it is an ac-urate representation of the real world
system, he may want to alter the problem data in order to improve the
objective value. If it is not an accurate representation, a reformula-
tion of the model may be required so that it more accurately represents
the real world system. The task of identifying discontinuities or
verifying that there are none in the region of interest can often be
accomplished by systematically varying problem data over some neighbor-
hood. Thus a number of closely related problems may be forrwulated as

a PILP.

* Contingency analysis: ILP models must make specific assumptions,

.
P
4
1

and hence cannot handle all possible "states of nature." For instance,
the uncertainty associated with major unlikely events might best be
treated externally to the model via modified formulations of the model.
Thus a number of ILPs, each of which corresponds to some contingency,
might be solved as a PILP.

- Implementation priority analysis: Management needs to measure the

importance of various components of an optimal solution. This informa-
tion is used in assigning implementation priorities to various contem-
plated changes in the real world system. If some individual changes
result in only marginal savings, they might be deferred until some
later time, or possibly might not be implemented at all. Those changes
which produce significant savings, however, might be implemented in the
near future with an eye toward overall corporate restraints such as
limited capital expenditures in a given period. Since each priority
formulation is an ILP, it is clear that a number of such formulations
may be solved as a PILP.

Each of these types of ana’ysis demonstrates a need for solving
closely related ILPs efficiently. The goal of this study is to satisfy

this need.

B. Basi~ Methodologies for Solving the PILP

It is natural to look to ILP solution methodology for ideas on form-

ulating a solution methodology for PILP. ILP solu:iion techniques tend
to fall into three distinct categories: cutting plane, group theory,

and b:anch and bound. Garfinkel and Nemhauser [1972] give a detailed

acccunt of each of these categories.

With one notable exception (Martin [1963]), cutting plane techniques

Lo st Al i L e b . . = J— R PP e ey "

ol s e el e

g

hes s g T o aic NI P E P EwTS Uy P YrTe TR bdnaion o P

m"@"‘%ﬂ'mﬁ; TP s

have not been overly successful in practice. Since cutting plane methods
are dual based, no feasible solutions are genarated along the way to
finding an optimal solution. This is a serious drawback since even
though finite convergence is assured for many cutting plane algorithms,

no upper bound can be put on the number of iterations required to find

an opti-am. This lack of an upper bound on the convergence of the
algorithms, coupled with the inability to systematically generate

ﬁ feasible solutions, generally makes cutting plane methods unattractive

3 § in real world ILP applications.

1 Group theoretic methods have been applied to pure ILPs for the most
1 : part. While some advances have been made, computational experience has
shown that group methods are not as effective as the branch and bound

approach, although they may be useful within a branch and bound

framework.

Branch and bound methodology has come to the fore in ILP technnlogy.
Due to the inherent flexibility of this approach, problems with special

structure can be solved efficiently by taking advantage of properties

associated with the special structure. Furthermore, feasible solutions
are often generated before optimality is proved so that if early termina-

tion is necessary, a gocd feasible solution will be available in most

cases.

In the remainder of this chapter some PILP analysis will be devel-
oped using cutting plane methods. However, as would seem to be true in
ILP, the most effective use of cutting planes appears to be incorporating

them in a branch and bound approach. The bulk of the analysis conse-

T ep———

quently will be an outgrowth of ILP branch and bound methodology.

daineE

As a means for understanding the relationship between ILP and PILP
solution techniques, two rudimentary algorithms for solving a PILP will
be given. The first approach utilizes cutting planes while the second

uses branch and bound. These algoritlms should provide a springboard

s

for the morc detailed analysis in later chapters.

1. Cutting Plane Approach

i . A e .

Th+ main idea behind cutting plane algorithms in ILP is to "cut off"
portions. of the linear programming feasible region while leaving the ILP
feasible region ti.e., the couvex hull) untouched. The optimal linear
programming solution ' “wus approaches the optimal integer solution as the

LP feasible region approaches that of the ILP feasible region. Computa-

e ANl 1 i i . s ittt BT Wb AT Sk ol

tional experience has shown that the first few cuts are often very

effective in removing large parts of the LP feasible region. However,
later cuts tend to become more and more degenerate, and progress toward 4
an optimal ILP solution deteriorates.

This empirical property of cutting plane algorithms might be ex-

ploited in PILP. Assume we have a PILP with a finite number of objective

functions:

For k=1,...,K solve:

min (c + £)x i
k ¥
x>0
(R) Ax > b

xj integer, j € J

where ¢, £ , A, b are all integer valued. It is easy to see that the

k

feasible reqions of each (Rk) are the same. If cuts are made only on g

the constraint set, then a cut which is valid for (Rl), say, is valid i

-y g

mw\’\ﬂwmmrf W

PR A oy s e o

for all other (Rk)' Of course, a cut made on the objactive function may
not be valid for all (Rk)' Therefore we assume in the following that
such cuts are not allowed.

Since cutting plane algorithms usually perform well during the first
few iterations, a plausible approach for solving the PILP might be the
following. We assume the feasible region is nonempty and bounded.

Solve (Rl) to LP optimality. If the optimal solution is not integer
feasible, then cuts are added to (Rl) until they become "ineffective”,
and then retaining these cuts, (Rz) is solved to LP optimality. Cuts
are then added to (Rz) until they become ineffective, and (R3) is then
solved to LP optimality, etc. When cuts become ineffective for (RK)'
return to (Rl) and continue the process. The hope is that cuts added
to one problem will eliminate the long series of ineffective cuts for
the other problems.

A cutting plane algorithm for the PILP with a finite number of
right hand sides can also be constructed. Consider the problem:

For k = 1,...,K solve:
min cx

x>0
(Qk) Ax > b + r

k

xj integer, j € J .
In the general case some constraints are being tightened and others are
being relaxed as k varies, so that the feasible regions are not neces-
sarily of the form F(Ql) EF(Qz) ... EF(QK). Up until now it was
thought that cutting planes could not be used under such conditions,

1 since a cut might be valid for one (Qk) but not for another. The fol-

lowing new result allows one to generate a valid cut for all K problems.

In the theorem we shall use the traditional LP notation of the

10

ik

PR (7 . S

|
|

Bl 3 d Gt o

s

i T T T T Ll R e wiek i

simplex method. Let B be a basis, Xy be a basic variable under the
i
basis B, NB be the index set of nonbasic variables, and X, = yi -
i
I a, x, wherey,6 = (B-lb) , and a,, i3 the updated constraint coef-
JeNB i35 i i ij
ficient for the LP tableau associated with the basis B. We assume that

(Qk) is a pure integer program with ¢, r, , A, b having all integer

k

components for k = 1,...,K. An analogous result holds for the mixed

integer case as well.

Theorem 1. Given any basic (possibly primal infeasible) solution for

- - N)
(Qk), the traditional Gomory cut, jzna (aij [aijl)xj 2.7y [yi]
(using the ith row of the tableau as the source row), does not violate

the convex hull of integer solutions for (Qk)'

Proof: Let be a basic variable and suppose y. < 0. Thenx_ =y, -
Broof: let X i 5, " Vi

I a,.x, 2 x_ + I qu.iysmmx.zOVjeNsnx +
jeng 33 By jews 377 s By
T [aijlxj j_[yi] since both sides of the inequality must be integer.
jeNB
Then
X + I ;,,x =y
By jeNB i35 i
-(x, + I [a ,.lx, <Iy.])
Bi jeNB 1] o
I (a - la_ Dx, >y, = ly.)
jen Y i377 i
or letting i3 = aij - [aij] and fi = = [yil ’
we have r f..x >f . I

. i =5
JeNB 33
Note that the assumption that Y, < 0 did not affect the proof.
In order to use this result effectively, we proceed as follows.

Set up the LP tableau for an initial basiz feasibla solution for (Ql)

11

Iosaada

L . hiiiie b

-

WMWWM- il

under the basis B,

51 % s

E.

i : _

f ¥i %43 ,

E @) ;
L |

s ¥ where yi is the updated right hand side and ;; is the associated obigc- é

E é tive function value. Then in columns directly to the left of the (:i) ?
¢ column, add columns for initial (possibly infeasible) basic solution: i

for (Qk)' k = 2,...,K with respect to the initial basis B found for (Ql)'

_ _ — _ 1
ZK se e 22 21 Cj g

\

-]

] 2 1 1
Yil o | Ys Yy i3 !

. 1
—]
K

E

Q) -+ (@) (@) 2
s

Now solve the LP for (Ql) updating the tabieau from iteration to

iteration in the usual manner with the extra columns for k = 2,...,K

being updated according to the same rules as for k = 1. Assume we have

gsolved the LP to optimality for (Ql) and the solution is not inteyer.

Then we may add the cut (choosing a source row i): z f..x. > f} . 3
jeNB ji— 1
f But by Theorem 1 we may add the cut I f..x, > f (using the same
L jeNB 1373 . 1
t
} source row) for (Q), k = 2,...,K. Note tuat I f. . x, is the same for
- k i373
; jeNB
12

o .‘
i.ii-ﬂH'tllllllllllllll!l!!!!!!lllltﬂ‘ e T —_—
i IR TS T T 0T I T I W ST MR Y T —

all k, so that only one row must be added to the tableau. This row

will be I f x > (f},fz,...,fx). The expanded tableau is:
ij3— 4 i
jeNB

L z, z, cy
K 2 1 s,

il o Y| M i3

fg ces f? £ £
i i ij

(QK) cee (Qz) (Ql)

So *hen for any ' isis B we may add a cut which is valid for each (Qk)'
Unfortunately, a cut guarantees only to cut off the current solution,
and not to cut off any feasible integer solutions. So if the current
basic solution is infeasihle for some (Qk)' it is possible that none
of the feasible LP region of (Qk) will be cut off. However, if the
curren: infeasible solution is "close" to the feasible region, it is
more likely that some of the feasible LP regicn will be cut off.

It follows that the cutting plane approach given for the finite

objective function PILP can be used also for this finite right hand

;

side PILP assuming that for each (Qk) the feasible region is ronempty
and bounded. By making simple changes to allow for unbounded or empty

feasible regions, this assumption may be dropped.

TN e

13

TN

gt o 2y S AN P

st b n aba o Lok e

P

Lt b s

— T Lebib e daa
T e Y e YU T I YT L W oy ogywer

ol

2.

Branch and Bound Approach

We now turn our attention to the method of branch and bound. Due
to the inherent flexibility of the approach, it is no surprise that the
? general ILP branch and bound approach may be extended in a straight-
foxrward manner to the PILP. We shall give a rudimentary ILP algorithm

and then show now it can be generalized to the PILP.

Sl

Consider the ILP:

min cx
(P) Ax > b

x, integer, j e J .

3

Iet v(*) be the optimal value of (-). A rudimentary branch and bound

Eh AT

approach for (P) is (Geoffrion ard Marsten (1972]):
1. Initialize the candidate list to consist of (P) and set z* to ®.
2, Stop if the candidate list is empty: if z* is finite, then the

solution x* associated with z* is optimal in (P); otherwise (P)

—

has no feasible solution.

3. Select one of the candidate problems to become the current
candidate problem (CP).

4. Solve a relaxation of (CP), namely (CPR).

5. If F(CPR) =@ or v(CPR) >z*, then go to 2.

6. If the optimal solution to (CPR) is integer feasible, set z* =
v(CPR), set x* to the optimal solution of (CPR), and go to 2.

E 7. Separate (CP) into two simpler problems such that the union of

their feasible regions is the feasible region of (CP). Add these

Ty

two problems to the candidate list and go to 3.

e

14

We now consider the PILP.

For k= 1,...,K solve:

(p,)

¥ Ro

'_ to the particular problem in the PILP, while R

min (c + fk)x

(A + Dk)x >b + rk

xj integer, j € J .

Candidate problems will be denoted by (P). The subscript k refers

k,Ri

i refers to a particular

restriction placed on (Pk) as a result of separation. An example of such
a restriction would be to append the constraint X = 1l to (Pk) . Define

to be the null restriction, so that (P,) = (Pk) vk=1,...,K.

‘,RO

A rudimentary branch and bound approach for the PILP is:

Initialize the candidate list to consist of (Pl R)rte (P2 R Yeeoes
(4 ’

0 ¢]
v * [+~] =
(pK,Ro) ond set zg to for k 1,...,K.
Stop if the candidate list is empty: for each k =1,...,K, if z*

k

is finite, then x*

x is optimal in (Pk); otherwise (Pk) has no

feasible solution.
Select some subset, S, of the candidate list such that each member
of S has the same Ri' For s € S denote the corresponding candidate

problem by (CP)

kR, s’
For each s € S, solve a relaxation, say, (ak,Ri)s' of (Cpk,Ri)s'
For each s ¢ S, if either F(C_Pk,Ri)s = @ or V((C—Pk,Ri)s) > z]:, then
delete 5 from S. It S is empty, go to 2.
For each s € S, if an optimal solution to (CP,) is integer

k,Ri S

feasible, set z* = v((a)) and x* to the optimal solution of
k k,R,"s k

(CPk R)S and delete s from S. If £ is empty, go to 2.
’ .
i

For each s ¢ S, separate (CPk R)s into two simpler problems such
14 .
i

15

S o o o PR i L N b s 8 e] A

PR RO ey o

that the union of the feasible regions is the frasible region of

()su Update Ri to reflect this added restriction, and
i
go to 3.

Cpk,R

Through the choice of the subset S of candidate problems in step

3, flexibility is permitted in determining the order (if any) in which

.1.«,1——.
o Ao

the individual (Pk)'s are to be solved. By restricting the choice of

- g3
Sl e

S to those candidate problems with the same R,, it may be possible to

i

e

utilize parametric reoptimization techniques in step 4. This is the

4 g main reason for allowing more than one candidate problem at a time to
g é be selected from the candidate list ir. step 3. In steps 5 and 6 if
? ; fathoming occurs for some s € S, then s may be deleted from S since any
i further restrictions of (Cpk,R.)s are not of interest. In step 7
fr separation occurs for all rema;ning s € S. In order to capitalize
§ fully on parametric reoptimization techniques in step 4, it may be
% advisable to invoke identical separations for all s € S. However this

is not required. Basically, then, the choice of S in step 3 and the
choice of relaxation in step 4 allows fathoming and separation machinery
to be applied in such a way as to limit the number of relaxations to be
solved and to have control over the creation of new candidate problems.

Armed with these rudimentary approaches for PILP our next task is

to identify and catalog salient characteristics and properties of
special types of parameterizations which may be of use in formulating

more sophisticatad algorithms. This is the topic of the next chapter.

TR SIS

o e

S S, SISO

T T T T I S A W T
- : R R Al b s e e

II. CHARACTERISTICS AND PROPERTIES OF PARTICULAR PARAMETERIZATIONS

Aside from characteristics of specific problem classes, a PILP
possesses other characteristics and properties which may influence the
solution strategies to be used in an efficient algorithm. These
attributes generally depend on the type of analysis which ig being
undertaken, e.g., tradeoff, sensitivity, priority, etc. A representative

checklist of attributes is:

+ Are all the ILP problems which make up the PILP known in advance?
An example of where this may not be the case is in a priority
analysis. This analysis depends in a sequential fashion on the
optimal solutions to selected iILPs; generally it is impossible to
state explicitly in advance all of the ILPs which are to be solved.

+ How many ILP problems make up the PILP? Are there just a few,

a dozen, a continuum, or is the number unknown?

- How are the individual ILP problems related to one another?

Do they differ only in the objective function or only in the
right hand side? Does the constraint matrix change? Are
variables added or deleted? Are constraints added or deleted?
Is there a continuous parameter of change? Are the feasible
regions or the objective functions changing monotonely?

-+ What optimality tolerance is required? 1Is e-optimality or
"beating some threshold" the criterion? Is the threshold value
known in adve'.~e for each problem or does it depend on inter-
mediate solution results?

Associated with some of these attributes are properties which may

be used to advantage in algorithmic design. Some of these properties

17

" TIETRTTRTI STy

hiedtitzcii s

R T G T N TP T

D e e e

i

B T

et i s

r——

i st S N

Ut Catt bl st T il LK e D B S it e T

allow the transformation of a given PILP into a hopefully simpler PILP.
Otherr deal with the behavior of the optimal solution and value for

special types of parameterizations.

A. Transformation of a Continuous Pure PILP to a Finite PJLP

Consider the pure integer PILP:

For v 6 € [0,1] solve:

min cx
(T,) Ax > b + 6Or

x integer
where x is an n-vector and b is an m-vector. We assume that each
component of ¢, b, r, and each entry of A s integer valued. The ele-
mentary result which follows (cf. Noltemeier [1970]) shows that it is

possible to transform the continuum of problems over ¥ 8 ¢ [0,1] into

an equivalent PILP with a finite number of right hand sides.

Theorem 2, The PILP, (Te) ¥ 06 ¢ [0,1), may be transformed into an
equivalent PILP of the form:

For k= 1,...,K solve:

min cx
+ =
(T,) Ax > b+t
x integer
where t, is an integer valued vector conformable with b for k = 1,...,K.

k

Proof: Since all entries are integer and x is required to be integer,
then for a given 6 ¢ [0,1) the vector b + 6r may be replaced by the

vector <b + 0r> (where <-> denotes the smallest integer greater than or

18

S e e Y

LT s

=~

Pt ot e A el B s el 0

R T

e

squal to °*, component by component). It follows that it is sufficient

to solve the PILP for those 6 € [0,1] such that 6r, is integer (ri # 0)

i
for some i ¢ {1,...,m}. But only a finite number of values of 8 ¢ [0,1]
satisfv this property, since each component of r is finite. Hence the
PILP may be transformed to the problem in the theorem statement. ||

The actual transformation may be done in the following way. For

each component ri y 0 of r write down the values of 0 € [0,1) fTr |
r.-1
p §

1 2
which ri is an integer. These values are g, T;:T,-T;;T, Q00 0 —T;IT, 1.

Place these values in a set Ri. Then H = 181 R, is the set of values
of 6 for which some eri is an integer. Let K be the cardinality of H,
and let ek be an element of H. Then an equivalent PILP is:
For k = 1,...,K solve:

min cx

Ax > b + ekr

x integer .

Letting tk = ekr we have the result stated in the theorem.

B. Theoretical Properties for Right Hand Side and Constraint Matrix

Parameterizations

Consider the PILP:
For k= 1,...,K solve:
min cx

(S,) (A + DJx2>Db+r

k

xj integer, j ¢ J .
Note that this parameterization allows simultaneous changes in the
constraint matrix and the right hand side. Let F(Sk) be the respective

feasible regions, v(sk) be the optimal solution values, and xi be an

optimal solution for (Sk)’

19

S ebir gl L el e

Definition: A PILP is said to be monotone if F(Sl) :}F(Sz) D ;?F(SK).

Theorem 3. Let the PILP be monotone. If xi is optimal for (Sk) and b

ol
X € P(Sk+1), then x; is optimal for (Sk+1) also. 4

& C . * ~
Proof: Since F(S, .) CFI(S), v(S,)} 2 V(S). Nowxp e F(s) so

TP

-]
v(S,,,) = v(S,) and x* is optimal for (S,). || |

It is clear that if a PILP (or even some subset of the PILP) is
monotone, and the individual probiems are solved in the order of
decreasing feasible regions, then some (Sk) may not have to be solved.

This occurs if xi € F(S).

k+1

We mention in passing that a well-known PLP result for a contin-

oML Londoie Ol gl iy

uous parameterization of the right hand side does not hold for PILP.

Consider the PLP:

LuW

For v 6 ¢ [0,1) solve: -

min cx i
xeX
o A > b + Or i

(H

where X is a polyhedral containing upper and lower bounds on all 4

variables, this assuring a bounded feasible region. It is well-known 3
that the optimal solution value v(ﬁs) is piecewise linear, continuwous, |
and convex. Unfortunately, this does not hold for the corresponding ;
PILP. However, we do have the following simple result.
Consider the PILP:
For v 6 ¢ [0,1] solve:
min cx

xeX
(H.) Ax > b + 6r

xj integer, j € J .

20

s
¥
L it e, A e ibea A s il TR R i e gl

bt RS e il i L e s an i il s b b MO ansd YL

Let the PILP be monotone. That is, if O 5-01 :_62 <1, then

F(Hg) o F(Hy). Also assume that F(H,) ¥ @.
1 2 1

??»
1

Theorem 4. The optimal solution value v(He) is nondecreasing (and .

b

Lo

hence quasiconvex) on [0,1]. 1

g B
-

Proof: Immediate. ||

;.
1
E) Note that v(He) will be piecewise linear and convex over segments
E of (0,1], but that, in general, disconcinuities will occur at isolated
f poini. on [0,1]}.
¥ C. Theoretical Properties for Objective Function Parameterizations
F
't.
é wWhen compared with the paucity of results for right hand side

parameterizations, the quantity of results for objective function

parameterizations may come as some surprise. This is due to the con-

stancy of the feasible region as a function of the parameterization.
All of the results in this section deal with the behavior of the opti-
mal solution and value as a function of the parameterization.
Consider the PILP:
For v 8 ¢ [0,1]) solve:
min (¢ + 6f)x
xeX
(P,) Ax > b

xj integer, j € J

where X is a compact polytope. The following result (Manne [1967) and

Noltemeier [1970]) is a direct extension of the result for the corres-

ponding PLP problem. s

B L. el e

21

iy

B)

-

RE adehciag 3 0 &

Theorem 5. For (Pe) v 0 ¢ [0,1) the optimal solution value v(Pe) is

plecewise linear, continuous, and concave.

Proof: Let F s {x|x € X, Ax > b, and x, integer, j ¢ J}. Replace F by

3
its convex hull, Co(F). It is well-known that this can be accomplished
by adding a finite number of linear constraints to the problem. The
convex hull has the property that each of ity extreme points corre-
sponds to a feasible solution of F. But, for ¥ & € [0,1]):

min (c + 6f)x 1is just a PLP. Then since the optimal solution

x€eCo (F)

value of a PLP over 6 is piecewise linear, continuous, and concave, it

must also be such for the PILP. H

This result, when coupled with the next theorem, reduces the
continuum of problems (Pe) v 8 € [0,1) to a finite number of problems

for which optimal solutions must be found.

Theor>m 6. For (Pe) a finite set of solutions can be constructed, each
member of which is optimal over some 6-range [a,b], where 0 < a <b < 1,
The union of these ranges is [0,1). (There may exist solutions which are
optimal only at a single value of 6, but in this case there must always
be an alternative optimum which remains optimal over a nondegenerate

interval including this value.)

Proof: Follows from Theorem 5 and from the fact that there are a finite

number of break-poirts for v(Pe) ¥ 6 ¢ (0,1). See figure below. |]

Note that in the ficure each straight line corresponds to a feasi-

ble solution for (Pe). The heavy line denotes v(Pe).

22

Bl il e b i s il D G A T S o

|
1

v(Pe)

T

T TS

The next lemma states a well-known monotonicity property of the two
b portions of the objective function of (Pg), namely cx and fx. This
property will enable us to make a statement (Theorem 7) concerning the

behavior of certain variables in an optimal solution of (Pe) as 0 is

g varied. Let x*(8) he an optimal solution for (Pe).

*
Lemma 1. If 0 < 6, <6, then cx'(el) < cx*(8,) and fx (61)'1 fx*(ez).

Proof: Without loss of generality, take 6, = O and 92 = 1 since c and f

1
are arbitrary. Clearly cx*(el) < cx*(ez) and (c + ezf)x*(ez)'g

*
(c + 8,£)x*(8)) < cx*(8,) + 6,fx*(6,). Therefore fx*(6,) < fx*(6,). ||

Our next result utilizes Theorem 5 and Lemma 1 in order to show
that it is possible to reduce the number of variables in (Pe) for cer-
tain values of 6. This is done by fixing (pegging) variables to

specific values.

Suppose (Po) and (Pl) have been solved to optimality, and a piece-
i wise linear, concave upper bound function UE(8) has been found.

Note that UB(0) = v(Po), UB(l) = v(Pl), and that UB(8) will have at
least two "pieces", one due to x*(0) and othe other due to x*(1),

assuming cx*(0) # cx*(l). There may be more than two "pieces" due to

23

T T N L Gl i et ek e kbl bl —_— e ms ol Bosy Lo

feasible (but not optimal) solutions actually found in the process of

solving (Po) and (Pl). See figure below.

(e+f)x*(0) 4= = == m e e e - - -~
v(P,) |
8 cox* (1) feagible but not
./L optimal solution
| for (P.)
V(P) =(CHE)XA (1) o e m e e LD =T m = 0
I
|
|
v(P_)=cx*(0) r
g |
0 1
8
‘1‘
% Further, suppose that xj is a 0~-1 integer variable and let a = 0 or 1.
o
4
} Theorem 7. .if x;(O) = a, g is any underestimate of v(POIxj =1 - a)
o. . o]
such that V\Po) < g, and h is any underestimate of v(Pllxj =1 - a),
y (e}
+hen X, may be pegged to the value a for those values of § for which
. .70 o
g+ (h-gq)6 > UB(B).
%
P.o.f. The linear function g + (h - g)8 is a lower bound on
4 v(Pelx. =1 - a) by concavity. |
P &

The figure below may help in understanding this result. 1In this case

xj may be pegged to the value a for ¥ 6 ¢ [0,911 LJ[62,1]. We note
o . -
that g and h may be found by utilitzing "penalties" which are calcu-

TR T TR

F lated during the solutinn process for (PO) and (Pl).
V(Pe)
v(Po) =UB (0)
g+(h-g)@
V(Pl)-UB(l)

24

ton o AR oy RNl L et it i Bt g dig: At i Bl Bk ol) anate me g o ghiadad Lors ot b adcadt adand

Of course it follows that if an underestimate ;of v(Pe‘lx =1 - a) for

b

some 8 ¢ (0,1) is known which is greater than the value c} + (f\ - t;)a,

then the piecewise linear, convex function connecting the points (;,0) P

(;:e) , and (1;,1) may be used as an improved underestimate for

3

v(Pelxjo- 1l - a) with attendant improvements in pegging x, to the value
(e}

a ovar segments of [0,1].

The next result gives conditions under which an optimal solution

of (Pa) may be deduced to be optimal over some segment of [0,l1]). This
result also enables the analyst to choose judiciously the next value
of 8 at which to solve (Pa).

i Let UB(gp) be a piecewise linear, concave upper bound function of

B s Rtk o S RN o S

v(Pe) where UB(0) = v(Po) and UB(l) = v(Pl). Let the straight lines

AC and BC make up the function UB(g) (see figure below).

Theorem 8. a) If v(Pe) = VC’ then the lines AC and BC coincide with
C
V(Pe) vee [0,1]. D) If v(Pe) = VD' then the line AB coincides with
C
v(Pe) vyoee [0,1].

Proof: a) The lines AC and BC are upper bounds for v(pe), Since
UB(0) = v(P.), UB(l) = v(P_), and UB(p..) = v(P_), and since v(P) is
0 1 C 8¢ 6

piecewise linear, and concave, it is clear that AC and BC coincide

with v(Pe) ¥ 8 ¢ (0,1]. b) Similarly, since UB(0) = v(Po), UB(1) = v(Pl),

and UB(ec) = v(P_), line AB achieves the mimamum for a piecewise
Cc
linear, and concave function, and hence AB coincides with v(pe), H

25

LA Zecc o s SR e o st s el Liadie e cai i duirie Sie e b etion s diasn Dbt 2o SR T P Tr——

P
<

v(P_)=UB(1)

1 v
1 D
¥ V(Po)'UB(O)

T

Basically, the theorem states that if v(pe) = Ve or v(pe) = v_, then
D

(o C
4 (Pe) is solved for v 6 ¢ [0,1]).

f Remark: a) 1If v(Pe) = Ve (see figure below),then AC coincides with
. E

1 the function v(Pe) V Oc¢ [O,OC), b) If v(Pe) = Vpr then AB coincides
i E

with V(Pe) veée [0,1].
| vIPB}

v(Pl)-UB(l)

Vg

v 4
v(p) =B (0] |

o B 8 1

PRIy

Of course an analogous result holds for eE € (ec,l).

These results for deducing optimality over a range of 9 are very
powerful, and may enable a substantial reduction to be made in
] computation time. They allow the analyst to solve (Pe) at selected
points only, and still be able to deduce optimality over the continuum
[0,1]. It is clear that having solved (PO) and (Pl), a likely choice of
the next value of 6 at which to solve (Pe) is ec. This is because if
g- v(PeC) = vc or v(PeC) = VD' the entire problem for ¥g ¢ [0,1] is solved.

26

h
bl e 0 et L Sl X " -
« i s chad it sl i et APPSO st skl .
S e

TR 7 PR TR ler T TR P UL W R e ST e [aiaus il pa oo Ty

, f 0 " -
'!ll!\qﬂ' PATIIRS Iy 2 g . . . aomman 0 A b 8 1 2SI A 4 v f

Next we consider the sensitivity of an optimal ILP solution to
special changes in the cost ccefficients. This comes within the realm
of PILP, since by our definition a PILP is a collection of closely

related ILPs. Consider the ILPs:

min cx min c'x
(P) Ax » b (p') Ax > b
xj = 0,1V 3jed xj = 0,l1¥jeyg

~

where c' = c except in the kth component. Let x be an optimal solution
to (P). Piper and Zcltners [1973a! state a weaker version of the

following result.

~ -~

Thzorem ¢. For some k € J, suppose x, = 1. Then x is optimal in (P')

if and only if ci <c + v(P|xk = 0) - v(P).

k

Proof: Since ; is feasible in (P'), it is optimal in (P') if and only
if ¢'x <v(P'). But v(P') = min {v(P'|)S(= 0), v(P'ka = 1)} where

v(p'|xk =0) = v(Pka = 0) and v(P'lxk =1) = c';. So ; is optimal in
(P') if and only if c'x E_V(Plxk = 0) where c'; = v(P) - c * ci. [

~

Corollary. For some k ¢ J suppose X, = 0. Then x is optimal in (P')

if and only if ¢! > ¢

X - v(PIxk =1) + v(P).

k

Note that in an application one may not know the value for
v(Plxk = 0) in Theorem 9, but through the use of "penalties" one may
calculate an underestimate of this value which can be used in the
Theorem. We observe that the ranges for changing the cost coefficients
are valid only for one-at-a-time changes. However, by restricting this

range , simultaneous changes can be made in cost coefficients. Let

27

Rt T]

4 A
]] . ! - LR - L '
(p') = (P|ck < c and cy cl), (p''") (P|ck), and ¢y < cl), and

1 ey o ['
. (P''") (Plck < ¢ andcy < cl)ﬂ

) a ~

Theorem 10. For some k, & € J suppose v, =x = 1. Then x is optimal

LI} L} L}
in (P''') if ¢, < ¢ and Cy 2 €y

PR R S R LS

-

Proof: By Theorem 9, x remains optimal in (P') and (P''}. We will

; g show that v(P"'ka =x, = 1) <min {v(?"'lxk =x, =0, v(P"'|xk =1,
f x, = 0), v(p'''|x, = 0,x = 1)} . First, vB'''[x =x = 1) <
: v(P|xk =x, =1 j_v(Pka =x,=0) = v(P"'lxk = x, = 0). Second,
: i v(P"'Ixk =x, = 1) f_v(P'ka =x, = 1) < V(P'|xk =1, X, = 0) =
1 % V(P"'ka =], xl = 0). Third, v(P"'|xk = x2 = 1) f_V(P"ka = xE = 1)
] ¢ < v(P"|xk =0, x, = 1) = V(P"'lxk =0, x, = 1). |
; . A
Defining (Q''') = (Plci 2 ¢ and cé > cz) we have:
Corollary. For some k, £ ¢ J, suppose ;k = ;g = 0. Then ; is optimal
in (Q''") if cﬁ 2 ¢ and ci 2 Cge

Note the difference in allowable ranges in Theorems 9 and 10. 1In
Theorem 9, the cost coefficient of a variable may be increased by a
certain amount or decreased by an arbitrary amount. In Theorem 10,
however, the cost coefficients may only be decreased arbitrarily. This
is a direct result of the fact that v(P]xk = 0) may vary, if say, <,

is changed as is done in Theorem 10. Since v(Plxk = 0) no longer

remains constant, it cannot be used as part of the bound. Finally, we

note that by combining Theorem 10 and its Corollary, we may simultaneously

decrease cost coefficients) such that X, = 1, and increase cost §

coefficients c2 such that xz = 0.

aide it it Ll dia A —
BRI T
DIV urmesis s i

F;
; 2
; This completes the chapter on characteristics and properties of

{ } particular parameterizations. The utilization of the results which }
E have been given depends almost entirely on the type of parameterization ;
? in the PILP. The next chapter details techniques for improving >
; algorithmic efficiency which depend on the specific problem class (e.g., 3

capital budgeting, facility location, etc.) being solved. [

.

T

29

PR T

I1I. PROBLEM DEPENDENT TECHNIQUES FOR IMPROVING ALGORITHMIC EFFICIENCY

Given a PILP made up of ILPs belonging to a special problem class,
what methods are available which would improve algorithmic efficiency?
Four major techniques are problam reduction, feasibility recovery,

.ng problem reoptimization, and wide range bounding.

Problem reduction refers to preliminary analysis performed on a

problem which may result in vea.iables being fixed at certain values, or
additional constraints or cuts being added which will tighten the
ipitial (and succeeding) relaxations. Set partitioning problems
(Marsten [1971] and Garfinkel and Nemhauser [1969]) are prime examples
of instances where logical reduction is used to reduce the size of the
problem. Basically, logical tests are used to conclude that certain
variables must take on specific valucs (pegging) in an optimal solution,
and that certain constraints can be eliminated. Hammer and Nguyen
[1972] have used logical tests to generate precedence relations for
general 0-1 XILPs., Examples of such relations are xj g_xk or
xj + X, < 1l. However, for many types of ILPs such analysis is not
worth the effort expended. In other words, the ILP can be solved
faster without preliminary analysis. In PILP, on the other hand, if
a single preliminary analysis can be done for many or all of the
individual problems in the PILP with little or no modification, then
the analysis may become more attractive because the extra work can be
amortized over the whole set of ILPs in the PILP.

Since upper bounds on the optimal solution value are used for
fathoming, generating good upper bounds is of primary importance in

any branch and bound algorithm. Feasibility recovery technigues are

30

o PR P

-

e s

o e A~ SN Siole i

o

st e s

i
14 T — J

ugsed to generate these upper bounds. The technique involves taking an
optimal or even just a feasible solution to one problem and modifying it
in such a way that it becomes feasible in another problem in the PILP.
A simple example is the mixed integer linear program where the right
hand side is varied. Given the optimal solution for the original
problem, fix the values of the integer variables, and then reoptimize
the continuous variables using the new right hand side. 1If the
resulting solution is feasible, then an upper bound on the revised
problem has been found.

Bounding problem reoptimization is another promising technique.

Reoptimization in ILP algorithms, which utilitze LP as the primary
relaxation, is often used to great advantage. Generally, an advanced
basis is used from the preceding candidate problem as a starting basis
for the current candidate problem. Reoptimization then proceeds using
the dual simplex method. In PILP this approach would also be used,
but there is yet another application. By referring to the rudimentary
branch and bound algorithm in chapter I, we see that it is possible

to choose a subset S of candidate problems from the candidate list.

If these candidate problems are closely related, then a reoptimization
technique would probably be an efficient method for generating an
optimal solution to the relaxation for each member of the set S. Such
a procedure could result in smaller storage requirements as well as
reduced computation time.

A fourth technique we dub wide range bounding. Generally this

technique is based on the formal Lagrangean dual, and depends on find-
ing feasible dual solutions which serve as valid bounds on the optimal

values of the primal problems in the PILP. Oftentimes, dual feasible

31

bl 8 55

(FEIPPE B RS RE

solutions are inexpensive to calculate, and at the same time may be
surprisingly good approximations to the optimal value of the primal

relaxation. Thus, these methods may be used in place of (or in con-

i
S

junction with) the reoptimization techniques in the previous paragraph.
{ ' The tradeoff involved is that computation time is reduced at a cost of
4 : producing a weaker (dual) bound. Examples of wide range bounding
applied to the continuous otjective function and the continuous right

hand side parameterizaticns are given below,

Consider the problem:

WIS G R PR A

H For v 6 € [0,1] solve:
:
§ min (c + 8f)x
¥ xe¥
¢ (Pe) Ax > b
¥ xj integer, je J
‘ where X is a compact polytope.
Suppose that a set of dual multipliers X > 0 for the Ax > b

constraints have been generated for some 6 ¢ [0,1]. We know from

1 duality tlieory +hat: v(Pé) > v(Dé) 4 max [inf (c + 0f)x + A (b - Ax)]

& _ A> 0 xeX
> inf (c + 6f)x + A(b - Ax). Also it follows for any other set of
L du:;:.xmltipliers i > 0 that: v(Pe) > v(we) & max {;rex; (c +6f)x +
L X(b - Ax) ; inf (c +6f)x + A(b - Ax)} . Now since v(8;%) =
; inf (c + ef):€)+f A{b - Ax) is a piecewise linear, concave function of
] xeX

0 (for fixed 1), and since v(De) is also a piecewise linear, concave

function of 6, we have the situation shown in the figure below.

32 4

TN A Sl e 20 o

vi*))
0 .~ improvements in dual bound
/ due to concavity of v(D,)
Y,
- -:"{ x -
=l :
" / r b S * A
e A
|~
0 1

Since v(Pe) > v(De) > v(we) and since v(De) is piecewise linear and
concave, we may improve v(we) by filling in the non-conecave portions
of v(we) as shown by the dotted lines in the figure. Of course this
analysis holds for any number of choices of A > 0 for use in the
calculation of v(we) . In essence we are only applying the fact that
v(De) must be concave.
Next we consider the problem:

For ¥ 6 ¢ [0,1) solve:

min cx

xeX
(H)) Ax > b + 6or

X, integer, j e J

3
where X is a compact polytope.

Suppose that we generate two sets of dual multipliers X > 0 and
A - 0 for (H;). Then v(Hg) > v(Gy) £ max {(X(b + or) + ini (c - AA)x ;
i(b + 0r) + inf (c - ;A)x} . Note the interesting prop:ity that the
"inf" proble:;xdo not deperd on 8. This suggests that the computa-
tional burden of finding a dual bound for (He) ¥ § ¢ [0,1] would be
very cheap. Still another dual bound may be obtained from the LP
tableau of (Fl-a) (if LP is used as the primary relaxation). Suppose

that we have an optimal tableau for (il‘é) . The primal solution values

33

el e il

it

i Sk

ok AR e B st K i

of the basic variables are represented in the tableau by B-l(b + 6r).
Now for some other value of 6, this basis may be infeasible. But if
the dual simplex method is used to regain primal feasibility, we may
generate a dual bound for all 9 at each dual simplex iteration, since

dual feasibility is retained in the dual simplex algorithm.

—— i 2O g

i STt e

34 !

R e T .,_>~,..:‘>\-‘a.-u--uulJ

o T YT e E Ty I T YT W RPr T P T eW W7 WY =¥ S Wy e P vy e

¥

Lta, 7,

IV. SCHEDULING SOLUTION PRIORITIES FOR PILPS

In solving the PILP an important decision which must be made is

the establishment of solution priorities. Specifically, should equal

b ¥ effort be given to solving all of the problems in tne PILP at all times,
% or should some priority scheme be initiated whereby one problem or
5 some subset of problems is solved to optimality, and then another

subset is solved? The priority scheme to be devised should take into

S B e a S et

account the type of parameterization and its attendant characteristics

bt ochiy

and properties (chapter 1I), problem class dependent techniques (chapter

I1I), as well as aspects identified in the first part of this chapter.

An important factor which plays an intimate role in the formulation

Ty

of PILP branch and bound algorithms is whether the solution of one prob-
lem is likely to furnish information useful for solving other probiems
in the PILP. Three aspects of this fictor will be outlined in this
chapter. The first aspect is the tightness of the primary relaxation as
a function of the problem set index. The second is the behavior of in-
dividual integer variables in an optimal solution as the problem set
index varies. The third is the question of whether a branch and bound
tree for one problem in the PILP is a "good" branch and bound tree for
another problem in the PILP,

The gap between the optimal integer completion value and the opti-
mal relaxation value at a given node in a branch and bound tree is a
measure of the tightness of a relaxation. This gap, of course, is de-
pendent on the problem set index. The behavior of the gap function is
an important factor in deciding on the priority for solution of the ILPs

making up the PIIF, since it would seem likely that problems with smaller

Y46 o 2

gaps are easier to solve than those with large gaps. This will become

clearer later in the chapter when various solution priorities are out-

lined. In addition it may be the case that solving a "small gap' prob-
lem first may enable good feasible solutions for closely related prob-

lems to be generated by feasibility recovery techniques.

Behavior of individual integer variables in an optimal solution as
the problem set index varies is also an important consideration.
Intuitively we ask the following questions: a) do the optimal solutions
remain relatively stable as the problem set index varies? b) do
"important” variables tend to remain "important" as the problem set
index varies? Both questions can be clarified by appealing to the
notion of "integer A's." For a 0-1 integer variable, xj, define
A(j) = v(Plxj =]1) - v(PIxj = 0). Intuitively A(j) may be thought of
as an indicator of the "importance" of xj in an optimal solution of (P).
1f |A(j)| is small, then the value of xj does not have much effect on
the solution value. It follows that in a branch and bound process,
important variables should be the variables on which branching is done
initially. Clearly, then question b) would seem to be vital, for it is
directly related to the third factor which we shall now examine.

The question of "good" branch and bound trees for problems in a
PILP can best be examined by considering the notion of "scratch tree"
dynamics. Given a PILP indexed by k, and given a traditional ILP
algorithm, a scratch tree is defined to be the branch and bound tree
resulting from applying the ILP algorithm to, say, the kth problem in
the PILP from scratch without the benefit of any prior information.
Scratch tree dynamics is the study of how the scratch trees change as

the problem set index, k, varies. If the scratch trees remain

36

T v . o 4 vey —w —
e} T Sdnd oo Caead vy » " YTy =

el e

. o

P UTA——

reasonably stable as a function of the problem set index, then it is

likely that the scratch tree for the kth problem will be a "good" ini-
tial scoaration for the other problems. We observe that a scratch tr. -
consists of two types of nodes -- fathomed nodes and unfathomed nodes.

If a node is unfathomed for one problem, it is reasonable to presume

R T P e

T R R

that the corresponding node will be unfathomed for a closely related

ey

problem (assuming that the same type of bounding relaxation is used).

I While this may not always be so, it does afford a rationale for inspect-

R TR T W T o e

ing only the fathomed nodes of the original problem. Furthermore, since

| the fathomed nodes form a partition of the feasible solutions of the

L e

problem, no optimal solutions can be missed by using this set of nodes

as an initial candidate list (initial separation) for another problem in
the PILP. Thus we may choose to use the set of fathomed nodes as an
initial separation for another problem in the PILP. This is the tack
used by Roodman [1972,1973) in his study on ILP sensitivity.

Armed with a better understanding of the factors which are of
major consequence in the formulation of PILP branch and bound algorithms,
we now consider the scheduling of solution priorities for individual
problems in a PILP. There are at least three solution priorities for a
PILP branch and bound algorithm.

The first approach is purely serial. One problem in the PILP is

solved to optimality, and then using the information gleaned from this

problem the next problem is solved to optimality. This procedure 4

continues until all problems have been solved. Information which might i

be of use for future problems includes: choice of an initial separation,

et el e

choice of branching rules and their operating parameters, knowledge of

a good upper bourd, relative emphasis placed on fathoming and pegging

37

B it it e S

 — T e

—

Y

e 0 =
» g e m FRPIPIA A PeG D & 4 gy o N

machinery, choice of quitting threshold, and avoidance of nodes which
are likely to be unfathomable.

A second approach is lexicographically serial. Let the problem

set be indexed by k. The procedure begins as though (Pl) is the

only problem to be solved. Branching, pegging, and fathoming machinery
are devoted wholly to (Pl) until at some node (CPl'Ri) is fathomed.
Then at this node the relaxation for (sz,Ri) is solved (hopefully

by reoptimizing the (CP) relaxation at the node). If (CP2 o) is
[N
i

1,R,
i
fathomed, the (CP3 R } relaxation is solved to optimality, etc. If
’ ,
i
(CP2 R) is not fathomed, then branching continues from that node with
’
i

the branching, pegging, and fathoming machinery devoted wholly to (Pz) 0

when a (CP) is finally fathomed at a node, the (CP) relaxation
Z'Rz 3'R£

is solved to optimality at that node. The process continues in this
manner and backtracking in the branch and bound tree occurs naturally
with each unfathomed node being tagged with the index of the problem
to which the branching, pegging, and fathoming machinery will be
initially devoted.

A purely parallel approach is another possibility. At each node
the relaxations for (Cpl,Ri)'(CP2,Ri)""'(CPK,Ri) are solved. If
some problems are fathomed, they are dropped from further consideration
at any descendant of the node. When all problems which remain under
consideration at a node are fathomed, backtracking from that node
occurs.

The parallel apprcach, then, relies on the assumption that solving

a series of closely related problems at a given node can be accomplished

relatively efficiently. The purely serial approach on the other hand

38

il

"
3
b
s
#

"m

AL

iy

aTGEeE

-

a1

s

relies on the assumption that information gained from solving one
member of the PILP will be helpful in solving another member of the
PILP. The lexicographically serial method is one possible compromise
between the two approaches.

At this point we present an analysis which under certain assump-
tions establishes a bound on the savings in computation time which
can be achieved by the serial and lexicographic serial methods, over,
say, the traditional approach where each problem in the PILP is solved
from scratch. We assume that LP optimizations (or indeed any other
optimizations) require the same amount of computation time at all nodes
in the branch and bound tree. While this is not generally the case, it
does allow for a simpler analysis. The assumption may be dropped at
the cost of complicating the conclusions somewhat.

Consider an arbitrary branch and bound tree with the set of

fathomed nodes denoted by N.

Remark. If a branch and bound tree has INI fathomed nodes, then there

are |N|-1 unfathomed nodes in the tree.
Proof: By construction using the fact that 20+21+...+2|N|-1 = 2|NI-1.||

Thus we see that the number of fathomed nodes is approximately 50% of
the total number of nodes investigated in a branch and bound procedure.
If the serial method is used for a PILP which utilizes the set of
fathomed nodes as an initial separation, then the maximum savings in
the number of nodes investigated is 50% over an approach where each
problem is solved from scratch. This holds for the lexicographically

serial method as well. Thus there is an upper bound on the savings

39

it e el ks

aaaa

L e

T

which can be realized using the serial or lexicographic serial

approaches instead of the traditional approach.

40

V. THE PARAMETRIC 0-1 KNAPSACK PROBLEM

In this chapter we consider the parametric 0-1 knapsack problem.
Three specific parameterizations will be examined:
l) Fork=1,...,K solve:

max cx

(P) x=0,1
wx <B-t¢t

2) Fork=1,...,K solve:
max (c + £)x
(R) x=0,1 k
Rk wx < B
3) For v 8 € [0,1] solve:
max (c + 6f)x
(Qe) x=0,1
wx < B
where ¢, £, fk' w are conformable n-vectors and B, tk are scalars.
Without loss of generality we assume throughout this chapter that
c, w>0,B>0, and 0 = t1 < t2 < vo. < tk < B.

The 0-1 knapsack is a very simple model. One important applica-
tion is the capital budgeting problem with one budget constraint.
Problem formulations 1), 2), and 3) allow for flexibility in the budget,
the cost coefficients, and in the maximizing criteria respectively. Per-
haps a more important use of the 0-1 knapsack problem is as a subprob-
lem fi.r a larger model. One simple example is a general capital budget-
ing problem (with m budget constraints). By Lagrangeanizing all the
budget constraints but one into the cbjective function, a 0-1 knap-

sack problem results. Under certain conditions this relaxation of the

original problem can be shown to be at least as strong a relaxation as

the traditional LP relaxation.

W

A AT

T

gt

The outline for this chapter is as follows. First, an efficient
algorithm for the 0-1 knapsack problem will be stated. Then algorithms
for each type of parameterization will be outlined, computational re-
sults will be cited, and conclusions will be drawn concerning the most

effective methods for solving each parametric 0-1 knapsack.

A. An Algorithm for the O-1 Knapsack Problem

Consider the problem:

(p)

By capitalizing on the simplicity of this problem, it is possible to
achieve substantial savings in computation time over, say, a general
0-1 ILP code. There are two properties of (P) which may be exploited

successfully. First we assume that the variables have been ordered by

c c c
decreasing "bang-for-buck" ratios so that — > —2-> ee. > 2 With
Y172 T

this ordering the solution to the linear program (¥)(replacing x = 0,1
by 0 < x < 1) becomes analytic. That is, variables with the largest
bang-for-buck are placed in the knapsack at their upper bounds of 1
until no more room remains in the knapsack. At this point the variable
which could not fit is placed in *he knapsack at a fractional level
such that the knapsack is filled. It is clear that all variables, with
the possible exception of one, have value 0 or 1 in an optimal solution
to (53. It follows that by setting the fructional variable to 0, feas-
ibility in (P) is achieved, so that a lower bound on v(P) is readily
available. It is these two properties (an analytic solution to (P) and
¢ simple feasible solution generator) which are exploited in the algo-

rithm below.

42

L

PR T R

Korsh and Ingarag:ola (KI) [1973) have developed an algorithm for
0-1 knapsacks which has proved to be very effective in reducing compu-
tation times. Basically they employ an inexpensive LP test which, if
passed, allows a variable to be pegged to 0 or 1 at the root (initial)
node of a branch and bound tree. Computational results show that up-
wards of 80% of the variables may be pegged to 0 or 1. The reason for
such powerful pegging is that the gap between v(P) and the lower bound
found by the feasible solution generator is generally small. Once the
pegging tests are completed, the "reduced" knapsack problem consisting
of the unpegged variables is solved by aay available knapsack algorithm.
Since ccaputation time for the pegging test is linearly proportional to
the number of variables, and a branch and bound approach is generally
exponentially proportional, such a dJdevice would appear to be quite at-
tractive. This is indeed true, since the KI approach reduced computa-
tion times by a factor of 5 for 50 variable problems and Ly over a fac-
tor of 30 for 1000 variable problems.

Dembo [1974] has noted that the concept of Lagrangean relaxation
may be used in carrying out the KI pegging tests. While his test is
slightly weaker than the XI test, the computation time required for the
pegging phase only is about 7/3 less than for the KI method.

The branch and bound algorithm used by KI was the Greenberg and
Hegerich (GH) {[1970] algorithm which until recently was the most effi-
cient knapsack algorithm However, Horowitz and Sahni (HS) (1974] have
developed a branch and bound algorithm which dominates the GH algorithm.
We present a variant of the HS algorithm which has decreased computa-

tion times {(in the branch and bound phase) by approximately 1/3 over

the original HS algorithm.

43

B e L e i il i 2 e s b

In order to make the rresentation of the algorithm clear, we shall

appeal to the general branch and bound framework given in Geoffrion and
Marsten [1972)}. An explanation of the finer points of the algorithm

will be deferred until later.

Algorithm A:

c c
1. Order the variables by decreasing bang-for-buck so that ;l 3_;3 >
. 1 2
cen lqo Set Il'Io"g.

Solve (P) getting an optimal solution X and an optimal dual multi-
plier) associated with the budget constraint. If x is feasible
in (P), stop: the solution is optimal. Otherwise denote the
index of the fractional variable by r.

Find a lower bound z* for v(P) by setting ;; = 0 in the solution
to (P). Let x* = x.

Try to improve z* by certair. heuristics.

For vi =1,...,r-1, if v(P) - c; + X&i < z*, set Il = Il U {1}
(xi is pegged to 1).
For v i = r+l,...,n, if v(P) + c; - Xhi <z set I =1, U (i)

(xi is pegged to 0).

Solve the remaining knapsack problem:

(R) Max L ¢ + I c X,
1511 1tIlLﬂo
X WX, <B - I w,
if1 01, iel,

by using the branch and bound procedure in steps 8-18.
Initialize the candidate list to consist of (R) and let the incum-
bent value be z*.

If the candidate list is empty, stop: x* is an optimal solution

44

fos e

i o bt Lol e mtl gt - i e A s L S St lad i I o b Ol 2 b il e e () e SN . 2 W atad

A4 Y W4,

co (P) and z* is the optimal value.
10. Select a candidate problem (CP) from the candidate list by a LIFO
rule.

11. Solve (CP) getting an optimal solution x.

a’
!
b
{
E
;

12. If (CP) is infeasible, go to 9.
13. If v(CP) < z*, go to 9.
14. If an optimal solution of (CP) is feasible in (CP), go to 18.

15. Choose that xj which is the free variable with the largest bang-

for-buck.

16. Ifw, <B- I w , then add only (CP|xj = 0) to the candi-

i:x, set to 1
date list, add the restriction xj =1 to (CP), and go to 15.

Otherwise go to 17.

17. I1fw, B~ I Wi , add the restriction x, = 0 to (CP),
i:xi set to 1 J

choose that xj which is the free variable with the largest bang-

for-buck, and return to the beginning of this step. Otherwise go

to 11l.

18. A feasible solution to (P) has been found. Set z* = v(EE}, xX* = ;,

and go to 9.

In step 2 an optimal dual multiplier A for (P) can be shown to be
c
equal to ;5. In step 4 two heuristics are used in an attempt to im-
r
prove the value of z*, First, set x = x and ir = 0. The solution x

then has a slack in the constraint with value s i;-wr. Now, for
i = r+l,...,n the following is done: if w, < s, set ii =1 and s =
s -w,. Ifs>0, repeat this step for i = i+ 1. If cx > z*, set

z* = cx and x* = x. Basically, this heuristic puts extra variables in

the knapsack until no more variables fit. The second heuristic begins

ki ot o e SR ot si

TR

bt

by setting x = x and ir = 1, This overfills the kaapscacit by s =
(1-;:) 'w_. Then for i = r-1,r-2,...,1 the following is dore: set
X§ i’

s <0, set 8 = -5 and return to the test loop in the first heuristic.

=0,8=8-w,, and if s > O repeat this step for i = i - 1. When
Thus this heuristic begins by overfilling the knapsack, and then vari-
ables are withdrawn until feasibility is obtained. At this point the
test loop in the first heuristic is employed. The pegging tests in
steps 5 and 6 utilize the notion of Lagrangean relaxation (LGR). Con-
sider the relaxation:

(LGRX-) max cx + A(B - wx) .
x=0,1

It is easily seen (Geoffrion [1973]) that v(LGRD = v(P) where X is an
optimal dual multiplier for (P), and that the solution to (LGRI) is
analytic. That is,
1 if ¢, -Aw, >0
2 i i
5] Skt
0 if ¢, - Aaw, <0
i i

Thus we have v(LGR—Ix. =1) = v(P) +c, - \w, if X, = 0, and
AT i i i
v(LGR—|x. =0) =v(P) - c, + \w, if X, = 1. Since V(LGR,) < v(P) v
AT i i i A -
A > 0, it follows that the pegging tests are valid. Steps 5 and 6 may
be enhanced by adding the following tests if the LGR test fails:
5b. If v(5|xi = 0) < 2z*, then set I_ =1I_ U{i}.

1 1
6b. If v(P|x, = 1) < z*, then set I = I, Uil
The branch and bound algorithm of steps 8-18 is straightforward,
but a few comments may make it clearer. In step 10 a LIFO selection
rule is used, thus guaranteeing linear storage and minimal setup costs

in a computer implementation. Step 14 is an addition to the HS imple-

mentation which recognizes that if a relaxation has an optimal integer

46

= ’

. o adi s —” - Rida dedaii diidan Lo
Maialniabakil 7 fbule diounio iy £ Bl e R ? A e 0" b 4 T PR e des dabin s Lt S SR R

feasible solution, then the current candidate problem may be fathomed.
The branching strategy in steps 15-17 is done as follows. The most
attractive free variable (in terms of largest bang-for-buck) is chosen
as the branch variable. However, since this variable has value 1 in
(EE), we have v(EF]xj =1) = v(EE}. Thus, no reoptimization is re-
quired, and the next branch variable may be chosen. This continues
until the next variable chosen, xj, cannot fit in the knapsack at a
level of 1. But this implies that xj may be pegged to O due to feasi-
bility considerations. Pegging variables to O continues until no
longer possible. At this point control is returned to step 11, and the
relaxation of the current candidate problem is solved. 1In actuality, a
group of variables (contiguous by index) are committed to 1 until this
is no longer possible, and then a group of variables (contiguous by
index) are pegged to 0 until this is no longer possible. This allows
the LP in step 11 to be bypassed after most branching operations, which
in turn reduces computation time measurably. This is seen in Table A
where the HS algorithm (as coded by HS) is compared to steps 8-18 of
Algorithm A. Note that steps 1-7 were omitted in these runs. Both
algorithms were coded in FORTRAN H and run on an IBM 360/91. Random ci
and wi were generated from a uniform distribution, U[10,100], and B was
set to .5'('2 wi). Results show that steps 8-18 of Algorithm A re-
duced comput;tion time by 33% when compar=d with the HS algorithm.
Results for all of Algorithm A (steps 1-18) are given in Table B.
These results clearly dominate KIl's results, even when machine differ-

ences are taken into account. Table C shows this dominance. The trend,

as the number of variables increases, definitely is in favor of Algo-

rithm A.

YN

Quadrupling the aumber of variables increases computation time by
a factor of 1.7, while for KI this factor is 4.2. Finally, we mention
that inclusion of steps 5b and 6b in Algorithm A was ineffective, and

in fact increased computation times slightly.

B. The 0-1 Knapsack Problem with a Finite Number of Right Hand Sides

In this section we consider problem 1). It is well known that
optimal solutions for all right hand sides from 1,2,...,B are available
as a by-product if (P) is solved via dynamic programming (DP). However,
with the reccnt developments in knapsack branch and bound technology as
expounded upon in section A, we shall see that for problems with a rea-
sonable number of right hand sides, the branch and bound approach is
more efficient both in computation time and in storage requirements.

From a practical point of view we note that if the various right
hand sides to be considered in 1) cover a large range, then within that
range it is possible to find optimal integer solutions for certain
budgets by simply filling the knapsack using the bang-for-buck ordering.
These budgets correspond precisely to those right hand sides within the
range which have a naturally integer solution, so that v(P) = v(P).
Occasionally this might be all that is needed, and of course such an
analysis may be done by hand calculation.

As an initial step in developing an algorithm for 1), we investi-
gate the problem dependent techniques of chapter III. Then factors
affecting the scheduling of solution priorities of chapter IV will be
considered, three algorithms will be given, and conclusions will be
drawn concerning the most efficient algorithm.

Reduction techniques can be an effective means for reduring

48

e

o

T T P

I W T

e B o -

computation time. The KI reduction used in Algorithm A is a classic
example. While this test applies only for a given right hand side, the
number of computations required is minimal -- 1 multiplication, 1 addi-
tion, 1 subtraction, and 1 comparison per variable. Hence, even when
repeated for a number of right hand sides, the computational effort is
small. Another reduction techniquas (which is independent of the right

hand side) is based on the following elementary result:

Theorem 11. If c; > < and w, S0k then the constraint x,

added to 1) without affecting the optimal solution values for (Pk) v

> xj may be

k = 1,...,K.

Proof: Assume x. = 1 and x* = 0 in an optimal solution for (Pk). Then

j i

let x = x* except iﬁ =0and X, = 1. Since w, :_wj, this revised solu-

tion remains feasible, and since cy :_cj, it has an objective value at

least as great as v(Pk). Since this is valid for each (Pk) individual-

ly, it must hold for (Pk) vk=1,...,K. ||

This means that if x; is pegged or set to 0, then xj may be pegged

to 0 also. Similarly if xj is pegged or set to 1, then x, may be
pegged to 1.

Feasibility recovery techniques allow one to recover a feasible
sc ution for (P2), say, given an optimal (or even just feasible) solu-
tion for (PJ). Suppose that a feasible solution x has been found for

(P,) where B - t >wx>B-t One approach is to find {jlij =1

1 2’

c c,

and ;i = min ;iJ. Then set x, = 0. If wx <B -t
j dsxg=l Vi J

solution for (Pz). If not, repeat the process. This approach simply

2 X is a feasible

removes the varlable which has the worst bang-for-buck from the knap-

sack. Of course, a multitude of other feasibility recovery techniques

oavie dhioass S ole o b o -y ELbicg ol ad i ae b v v Lia s i il eTTY TNy
m phataiiait, g g y T . . Y < *
v 4 T —

ANy wopep e

4

can be derived is well.

Next we examine bounding problem reoptimization techniques. Due
to the analytic nature of the LP solution for (Fk) , it is clear that
reoptimization may be handled very easily. All that is required is to
keep track of the level of the fractional variable, and then to reduce
its value until it reaches a level of 0, or until the budget constraint
is satisfied, whichever comes first. If the budget constraint is not
satisfied, the next (contiguous by index) variable equal to 1 in the
original LP is reduced in the same manner.

Finally, wide range bounding methods may be employed. However,
due to the efficient LP reoptimization available, such bounding tech-
niques would not seem to be attractive for this class of problems.

We now consider factors affecting the =scheduling of solution
priorities. The tightness of the primary relaxation is generally a
function of X s which is itself a function of the varying right hand
gside. It is easy to see that C "X, is an upper bound on v(;k) - v(P),
and that this upper bound varies from c .- € to 0 (for € > 0) for suit-
able values of the right hand side. So the gap value fluctuates up and
down (since r varies) with respect to the right hand side, making it
difficult to capitalize on the behavior of the gap.

The behavior of the individual integer variables in an optimal

intager solution seems to be rather stable for the vast majority of

variables. This can be seen by the consistent pegging of variables to
0 or 1 as the right hand side varies. In general, computational experi-
ence has shown that variables with large bang-for-bucks tend to be

pegged to 1, and those with small bang~for-bucks tend to be pegged to 0.

50

i e o

haial il on g s b i b a R a i it Sl i U e it

Variables with "average" bang-for-bucks tend to vacillate between 0 and
1l in optimal solv+ions as the right hand side is varied.

The persistence of pegged variables (for varying right hand sides)
: would tend to support the contention that scratch trees are rather
stable as the right hand side varies. Furthermore if the branch vari-
3 5 able is always chosen to be the free variable with the largast bang-
for-buck (as in Algorithm A), then since the wang-for-buck ordering

remains the same, the selection of branch variables should remain sta-

T

ble. This line of reasoning, of course, simply reinforces the conten-

F tion that scratch trees remain stable.

; Three different solution approaches for 1) were tested, all of

3 which used Algorithm A as a primary building block. First, a serial
approach utilizing an advanced initial separation was attempted.

Algorithm B:

l. Set k = 1. Solve (Pk) by Algorithm A getting an optimal solution

x*,

2. Ifwx* <B-t

K+1’ x* is optimal for (Pk+1) so let k = k + 1 and

return to the beginning of this step.

é 3. Setk=k +1. Ifk >K, stop.

é 4. Usez a feasibility recovery technique to find a good feasible solu-

; ticn for (Pk). Call it x* and the corresponding objective value,
z*,

5. Perform steps 2-7 of Algorithm A for (Pk).

E 6. Using the frontier of fathomed nodes (from (Pk_l) where pegged

variables from steps 2-7 of Algorithm A are eliminated) as an

initial separation (or candidate list), perform steps 9-18 of

Algorithm A. Go to 2.

51

O T TR T T P TR TP T 1 s A e, i

e Ll e s e A

Lidos do b L otoeni o o it ot S palke i it o RIS B)

LLAR b A CoFiach 001 e Soduzastut o m it Bg ot d aithca Koo uuisi Ay Hine 2y .

(e e Bl oS i a3

msmmﬁ"'"ﬂ*‘!” PO AW ARIOT 1 UL o vy LM

The test in step 2 is an application of Theorem 3.

the pegging tests of Algorithm A.

used may be described as follows

xgm=i) |

x1e1 x1=0
x3=1 x3=0

xg=1 c'/ xg=0

scratch tree for (Pl)

Step 5 employs
In step 6 the initlial candidate list

(see figure below).

xy=1 x=0
x3=1 x3=0
xg=0
x7=0
Xg=1 xg=0

"reduced" scratch tree

Initial Candidate List for (Pz)

L}
»®
L}

(Plxl

3
(Plxl =x, =
(l»"lx1 =X, =
(Plx:l =%, =
(P|x1 =1, Xy
(P[x, = 0)

In this figure a vertical line d
a horizontal line denotes the au

The candidate list may be ordere

= x_ = 0)

X, =1, x)

8 6

1,x6=x7=x8=0)

x7-1,x6=0)

x, = 1)

6
= Q)

enotes a variable pegged to 0 or 1, and
tomatically fathomed alternate Lkranch.

d in step 6 by the most promising relax-

ation value. In other words, when a candidate problem is fathomed in

52

TR

IR ATV ORI

T

(Pl), say, it is stored along with its relaxation value, say v(EF;).
Then for (PZ) these candidate problems are investigated in decreasing
order of relaxation value.

The reduced scratch tree is found by simply eliminating the top of
the scratch tree which consists of pegged variables resulting from the
pegging tests of steps 2-7 of Algorithm A. This is done since in gen-
eral these pegged variables comprise upwards of 80% of the total number
of variables in the problem, and as a result the frontier of fathomed
nodes becomes rather large. By using the reduced scratch tree, the
frontier is reduced significantly. Clearly the reduced frontier is a
valid initial separation for (Pz). The reasoning for this approach is
twofold. First, in removing the pegged variables from the scratch
tree for (Pl) it is assumed that having pegged a variable in (Pl), that
same variable may be pegged fr . (Pz). Second, in using the reduced
frontier it is assumed that tle unfathomed nodes in the reduced tree
for (Pl) will remain unfathored for (PZ). We should also note that
occasionally "automatic" fathoming occurs for problems in the initial
candidate list. For instance, consider the candidate problem
(Plxl = x3 = xB =1, x6 = x7 = 0). Now if x8 is pegged to 0 in (P2),
then this (CP) is fathored by infeasibility. It is also clear that a
zandidate problem may be fathomed if I wj >B - tk'

i:x; set to 1

A second solution priority is the lexicographically serial method.
ﬁkpriﬂme:

1. Perform steps 2-7 of Algorithm A for (Pk), k=1,...,K getting

(x*)k and z;.

2. If an optimal solution has heen found for a (Pk) remove that index

k from further consideratior..

53

M it e i i L ied i b TP T — T Rl s liadiss 4

oy

e o 5 S

M it e i 3 AN AT M”20t s Y bl WLt ahal 5 2l

B ket Bt

AR N S S ok it o

10.

11.

12.

13.

14.

Initialize the candidate list to consist of (Rk)' k=1,...,K
where (Rk) is the reduced knapsack in step 7 of Algorithm A for
(Pk). Individual incumbant valuss are denoted by z:.

Set k = 1,

Stop if the candidate list is empty: (x*)k is an optimal solution
and z; is the optimal value for k = 1,...,K.

If k > K, set k = 1. Select a candidate problem (CPk) by a LIFO
rule. That is, choose the last candidate problem in the list
which has a "k" subscript.

Solve (EE;) getting an optimal solution X.

If (CP,) is infeasible, set k = k + 1 and go to 5.

If v((CPk)), set k =k + 1 and go to 5.

If an op?imal solution of (CPk) is feasible in (CPk), go to 14.

Choose that x, which is the free variable in (CPk) with the larg-

3

est bang-for-buck.

If W, iB = tk = L Wi
3 i:xi set to 1 in (CPk)
h=k,...,K to the candidate list, add the restriction xj

, then add (cphlxj = 0),

1l to

(CPk), h =%k,...,K, and go to 11. Otherwise go to 13.

Ifw,. >B -t - I w;
j k o2 :
i:x; set to 1 in (CPy)
to (CP), h = k,...,K, add (cphlxj = 1), h = k+1,...,K to the

, add the restriction xj= 0

candidate list, choose that xj which is the free variable with
the largest bang-for-buck, and go to the beginning of this step.
Otherwise go to 7.

A feasible solution to (Pk) has been found. Set z; = v(c_pk) ,
(x*)k =x, k=k + 1, and go to 5.

In step 2 the reduction method is applied to all K problems. Steps

54

[T B

Sl

7

TRV Ty

E,
%
b

v

3-14 are a modification of steps 8-18 of Algorithm A. Basically, the
procedure is to concentrate on (Pl) in fathoming tests and branching
criteria until fathoming occurs at a given node. Then at that node
fathoming tcsts and branching criteria are applied to (Pz). This con-
tinues until all K problems have been fathomed, at which point back-
tracking occurs, and concentration of fathoming and branching at a node
transfers back to that (Pk) with the smallest index k which has not yet
been fathomed at the new node under consideration. Two advantages of
such an approach are the avoidance of excessive storage of nodes, and
ecunomies in the reoptimization from (CPk) to (Cpk+l)' Two disadvan-
tages are that an optimal solution for (Pk) is n~ always knowr. for use
in feasibility recovery techniques, and the mor . onicity test for opti-
mality cannot be applied since there is no pr...Jdained order for find-
ing optimal solutions for (Pk), k=1,...,K.

A third approach is a serial method where each problem is solved
from scratch. The only links between problems are the monotonicity
test. and the feasibility recovery technique. This approach could be
thought ¢f as the traditi- nal approach.

Algorithm D:
l. Set k = 1.
2. Solve (Pk) by Algorithm 4, getting x*.
): set k=k+ 1 and

3. Ifwx*<B-t is optimal for (P, .

*
k+l' X 1

return to the beginring of this step.
4., Set k =k + 1. If k > £, stop.
5. Use a feasibilicy recovery technique on x* to get a feasible solu-

tion for (Pk). Go to 2.

55

g ket e i U T PTEITY

Lhinid

1

e

Mlagiiings T T T P T I PR s it Lk e el il 2o e L D Sk

A fourth approach, which was not tested computationally, is the
parallel method. An algorithm incorporating this method is very simi-
lar to Algorithm C. Steps 1-5 ar¢ identical. That is, the pegging
tests for all problems are done before the branch and bound procedure
begins. In the branch and bound procedure (steps 6-14 of Algorithm C)
at any given node in the tree, (Eﬁk) is solved for all problems which
have not been fathomed at a predecessor node. All fathoming tests are
applied to each of these candidate problems. A branch variakle is then
chosen based on one particular unfathomed candidate problem, and candi-
date problems for each unfathomed candidate problem are added to the
candidate list. Of course if all candidates are fathomed at a given
node, branching does not occur. This approach was not tested computa-
tionally since it is very similar to Algorithm C, and since in general
more candidate problem relaxations would have to be solved in this
approach.

Computational results for the first three approaches are given in
Table D. Ten different knapsacks of 50 variables each, and ten differ-
ent knapsacks of 100 variables each were tested. Problem data was gen-
erated randomly as explained earlier. For each knapsack, 5 right hand
sides were selected by reducing each succeeding right hand side by 1%
for the 50 variable problems and .5% for the 100 variable problems. It
is readily seen that Algorithm D dominates Algorithms B and C by a con-
vincing margin, and that its behavior timewise is very stable. The
other approaches, while occasionally approaching the times of Algorithm

D, had a much larger variance in computation time. Reasons for the

superiority of Algorithm D are twofold. First is the effort expended in

bookkeeping and setup costs for Algorithms B and C. In general. these

T P AT

s

T

costs outweighed the actual algorithmic calculiations. A second factor
is that the implementation of the LP optimization in Algorithm D is
very efficient whereas the LP optimization in Algorithms B and C re-
quires more effort. 1In Algorithm D the LP ortimization is performed
only over variables with an index larger than some value. Also by con-
struction, these variables are all "free" variables. That is, checking
if a variable has been previously set to 0 or 1 is not required. 1In
Algorithms B and C, however, the LP optimization must be performed over
all variables and checks must be made to ascertain whether a variable
is free or not. These two factors would seem to be the major causes of
the increased computation times. As further confirmation of Algorithm
D's dominance, we appeal to the Remark in Chapter IV which in essence
establishes an upper bound on the savings which can be achieved by
using Algorithms B and C instead of Algorithm D. By coupling this
bound with the additional bookkeeping and optimization costs alluded

tc earlier, we have some indication of why Algorithms B and C failed
to perform as well as Algorithm D. We note however that it is entire-
ly possible that results could prove to be different if solution methods
of recent years (now obsolete) had been used as the primary building
blocks for a parametric right hand side knapsack algorithm.

It should be noted that ordering the right hand side values in
ascending or descending order is not overly important, except in the
case where the change from one right hand side to the next is ve:y
small. In such a case there are advantages to both orderings. If the
largest right hand side problem is solved first, then the optimal solu-

tion may remaii. feasible for the next smaller right hand side, and by

57

AR R i i sy ittt il oAt s e

i A Lan oo aton doiet i Thio o i b Dl A6

monotonicity its explicit solution may be avoided. If the smallest
right hand side is solved first, then the optimal solution value may be
an excellent lower bound for the next larger right hand side. On bal-
ance it would appear that the potential savings would be greater if the
largest right hand side problem were solved first. It is interesting
to note that the feasibility recovery technique (step 5 of Algorithm D)
was not effective. Computation times were better when step 5 was de-

leted. The major reason for this is that the feasible solution genera-

ator for (Pk) agenerally gave a better solution.

Finally, we mention that a tradeoff point exists for solving 1) by
Algorithm D as opposed to DP. Horowitz and Sahni {1974] have devised a
DP algorithm which effectively splits the knapsack problem into two

separate problems each being one half the size of the original problem.

This allows savings not only in stor.ge but in computation time as well.

While this approach is slower than Algorithm A for (P), it does possess
the property that optimal solutions for all right hand sides 1,2,...,B
are found as a by-product. It follows that as K increases in 1), the DP
approa:h becomes more attractive. Using a correction ratio of 8:1 for
computation times on the IBM 370/1€5 as compared to the IBM 360/91, we
cstimate (using HS's results) that the breakpoint for a 50 var.iable
knapsack is in the range of 12 right hand sides. That is, if K > 12
for 1), then the DP approach becomes more attractive. However, as the
number of variables increases, DP solution times increase markedly.

For example, using HS's results again, the breakpoint is 22 right hand

sides for a 60 variable knapsack.

58

i i e

A oaghiE it o

ey

it

PTRY FETETRY LBy Bt Ll atiesian i v - Sail st | crbuiatlaaii g o b s L ot o ey ————

C. The 0-1 Knapsack Problem with a Finite Number of Objective Functions

In this section we consider problem 2). In this PILP the feasibhle
region remains constant, while the objective function varies. Basical-
ly, Algorithms B, C, and D remain the same with two exceptions. Call
the modified algorithms, B', C', and D'. First, the feasibility recov-
ery technique is modified to: for x* optimal in (Pk)' x* is feasible

in (Pk+l) with value (c + £)x*. Second, the variables must be re-

k+l
ordered by descending bang-~for-buck for each problem. wnile os2 may
think that this reordering is unimportant computationally, we shall see

that sort time is actually a substantial part of total computation time.

Algorithms B' and C' were not tested for this parameterization
because of the poor performance of Algorithms B and C for problem 1).
The reasoning used in discarding these algorithms is threefold. First,
the computer implementation is quite similar to that used for 1). Thus,
since bookkeeping and setup costs took much of the computation time in
Algorithms B and C, it is clear that such would be the case for B' and
C' also. Second, the feasibility recovery technique was ineffective
for 2). This paralleled the ineffectiveness of the feasibility recov-
ey technique for 1). Third, scratch tree stability is worse, general-
ly, for 2) than for 1). This follows since in the branch and bound
procedure employed, branch variables are always chosen by best bang-
for-buck. Thus in 1), the branching remains stable since the bang-for-
buck ordering remains the same. However, in 2) this ordering generally

changes from (Pk) to (Pk+). We conclude, then, that Algorithm L' dom-

1l
inates B' and C'.

Algorithm D' was coded, and test problems were run. Problems were

59

bl Sk s v d e e

generated as explained earlier with the additional objective functions
3 randomly generated from the original ohjective function as follows.
One thi:d of the cost coefficients were varied by %108, one third by
+5%, and one third remained the same. It is interesting to note (even
in the absence of comparison algorithms) that in the 100 variable prob-
lems, sort time consumed some 40% of total computation time. See Table E,
Finally, we note that use of a DP algorithm for 2) would require
K separate applications. Since Algorithm A dominates the best DP algo-

rithm, Algorithm D' would dominate it as well.

D. The 0-1 Knapsack with a Continuous Objective Function Parameteriza-

tion

In this section we consider problem 3). This problem may be
thought of as finding optimal solutions for all possible weightings of
two criteria. For example, in a capital budgeting problem, manageme:nt
may be interested in maximizing some combination of net present value
and of pay back over the first three years of a project.

From Theorems 5 and 8 we know that v(Qn) is piecewise linear and
convex, and that it is possible to deduce optimality over a range of 6
by verifying optimality at certain values of 6. Our procedure uses
Algorithm A as a major building block.

Algorithm D":
1, set 6 = 0.
2. Solve (Qe) by Algoriti.m A getting an optimal solution, x*(6). For
each feasible solutic., x(8), which is found, add the straight
line (c + 6f)x(6) to LB(6) (the convex lower bound function for

v(8}).

i e R a o R e ool sl o a2 i 0 L e b L Sl o i i e aia em

g Rabs s ahe b bl

o e O ki i Laska

3. If 6 =0, set 6 =1 and go to 2.

4. Check whether x*(0) can be deduced to be optimal over some range
of 8. If optimal solutions have been found for v 6 ¢ (0,1], stop.
Otherwise go to 5.

5. Choose a new value of 6 which is a breakpoint of LB(0), which has
not been proven to be optimal, and which is closest to the previ-
ous value of 6. Go to 2.

This algorithm relies on building up a lower bound function for
v(Qe) by solving (Qe) at the end points, ¢ = 0 and § = 1. Then utiliz-
ing the power of Theorem 8, the next value of 6 is taken to be a break-
point of LB(8) which is closest to the old value of 6, and which has
not been proven optimal a; yet. This particular point is chosen for
three reasons. First, the value of LB(6) is likely to be a good feas-
ible solution for (Qe). Second, reoptimization m:lhods (when employecl)
are more efficient, in general, for a value of 8 close to the previous
value. Third, by choosing a breakpoint of LB(6) the potential for de-
ducing optimality over a range of 6 is greater.

Computational results are shown in Table F. Each component of f
was randomly generated by a uniform distribution U[10,100] which had a
S0%8 correlation coefficient with the corresponding cj. Note that the
number of values of 6 for which (Qe) is solved, is generally slightly
less than twire that of the number of optimal solutions found for
v 8 e [0,1]. This suggests that the method for choosing the next value
of 6 is quite effective. Also note that sort time for the 100 variable

problems comprises about 40% of total computation time.

61

Sl i it 20 oo s At aiad sl o 4 s L Ei 4 Lale o S v el oh i ko s o Lbe Lt Y i bt Lo an g st b e CLd Ty T

Table A

” Comparison of HS Algorithm and Algorithm A Omitting Steps 1-7
4 (Time in milliseconds excluding I/O and sort time
on an IBM 360/91)

1 : Problem Number of Algorithm A
1 Identifier Variables H&S Omitting Steps 1-7
3
;. ' 1365 50 6 4
’ 1397 50 5
| 1398 50 6
3 ! 1326 50 12 8
1 ! 1406 50 7 5
T ' 1366 50 16 1]
1282 50 7 5 !
: }
1340 50 15 9 s
1288 50 9 7 1
Total for 9 problems 98 67
Average for 9 problems 10 7
1
4
| Z
: A
3 !
i |
]
1 62

B A o e BT RrCA - =4 o
=3 r S 3 e ’ i’ ddidakiinisathiadibdaataiiiin. i

P e Tt
1
}
) Table B]
R
d I Computation Time in Milliseconds for Algorithm A)
S
3 l (excluding sort and I/0 time on an IBM 360/91) :
: Number of % Reduction Time for Time for Total f
i Problem Variables in Steps 1-7 Steps 2-7 Steps 8-18 Time ‘i
1 1365 50 88 2 0 2 1
1397 50 82 2 1l 3]
1348 50 62 2 2 4
; 1326 50 56 2 4 6 ¥
, 1406 50 82 2 1 3 2
3 1366 Lo 58 2 6 8 4
] 1282 50 80 3 1 4]
y 1340 50 82 2 3 5 i
_. 1288 50 78 2 3 5 |
, 1468 50 86 2 1 3 ;
; 4
Total 21 22 43
’ Average 75 2 2 4 ;
; i
,,' 2823 100 89 3 2 5 i
2 2772 100 65 3 2 S |
} 2763 100 67 3 5 8
i { 2945 100 88 3 1l 4
2795 100 99 2 0 2
3 2706 100 85 3 5 8
tﬁ 2589 100 99 3 0 3
i 2992 100 95 3 1 4
. 2447 100 94 3 0 3
,' 2771 100 86 3 1l 4
‘ Total 29 17 46
F Average 87 3 2 5
g 5531 200 86 4 3 7
L 5790 200 79 4 10 14
3 5423 200 94 4 2 6
3 5641 200 99 5 0 5
;. 5614 200 90 4 3 7
5536 200 94 4 2 6 3
5108 200 93 4 2 6 E
5274 200 95 5 1 6 :
5448 200 92 4 4 8
5734 200 93 4 4 8 3
f Total 42 31 73
1 Average 92 4 3 7
3
63
i3

e

TV e - " B
WW1"5.1!.!.5 n‘: in’fu ;‘ ’"’ﬁ’-""”ﬂwmﬁﬁé““‘\‘m * 17 ANIITUROBP I N PN APAFAG 1 S RPN I, o s B - U

Table C

Relative Increases in Computation Time

as a Function of the Number of Variables in a Knapsack

Number of Variables KI Algorithm Algorithm A

50 1.0 1.0

100 1.7 1.1

200 4.2 1.7

il

o

fac s s kil

Ty e

el i

NI IR, o P

v S =) (474 X4 sz /abexaavy

zZz €2 18 zot €11 1 ZA sbeiaay

912 EET €18 8101 906 8TTT Te301

1 €4 €T 9z 98 N dN 0s 89r1

62 o€ 174 60Z N z81 0s 8821

61 oz LE vs 66 LET oS ovel

ST 9T 8z oz S6 zv 0s z8z1

Lz 6Z 601 144 ¢ Syl €€T 0s 99¢€T "
1 24 9z 0ST SLZ 981 981 0s 90vT ©
| 24 9z ov 1 9¢1 86 0s 9ZeT

9z 8¢ 96 6TT 8LT ovt 0s 8YET

zt 1 A8 oz Lz 74 9€ 0s L6ET

61 1£4 17 29 zv 12°2 0s S9ET

(TeuoT3TpRILl) (I[PUOTL . BIL) (TPTXSS°XI¥T) ([RIIIS°XT) (TeTI3S) (Tetxas)

i i s e st

snbruyoel a W3 TIOBTVY
Kxaaooax A3ritq
-1sea3 burizTwo
a wy3lTxobry

§3593 but
ut pepnidutr q9
pue qg y3Tm
O wy3tIobtvy

9DpTS puey 3ybix

il

i

O wy3zTaobIv¥ s3s93 butbbsed g uyltaobiy SaTqeIaIRA wWOTqOId
ut pspniodout qo
pue qg yimm
g wy3TIOohIY

3o zaqumpn

(16/09€ VHI Ue uUO WTY} O/I PUe 3I0s BUTPNTOX® SPUOOISTITTW UT SWTL)

S3pTs pueH IYbTI § UITM waTqoxg yoesdeuy a3yl 103 @ ‘D ‘d sWYITIODTY JO uosTaeduwoDd

s i ada X bl R i i

a a1qel

RS T R Ty vy

T W

ke b o iy L

S Loy i U ™ o Al L

1 ST S TR e n o

9 L (¥4 S 3pPTs puey 3ybra/abexaay

62 9€ 9Z1 vLez abexaay

L8C 09t LSCt TvLe Te30g

Y4 [43 €01 66 -1 N 001 90Le
8¢ 9t vot Tee YN UN 001 L8EC
(074 9Z 89 SS N N 001 (4 4:YA
9¢ 8¢t L9 68T 4N aN 001 vese
143 v 0sZ 1371 4 iN 3N 00T 9¢t9¢
13 ov SEe Ty dN N (000 LzLe
Tt 8t véet 612 dN N 00T SL8¢
8¢ 13 4 SOt OtT N UN 00T €692
9z €t oL 68T UN UN 00T coLe
9z 123 TL S09 dN N 00T £SLT
aNDTUYDd3 [WY3ITIObIV $3s93 buibbed J uwy3ztaobly s35e3 butbbad g wy3Taob[y SoIqeIIBA WeTqoxd

Kza2a02091 K3TT119
33 bur3ijTwmo
J W TIobTVY

uT papnidutr q9
pue qg yta
O wy3txohb1v

(psnut3uco) q ITqel

uT pPepNIOUT q9
PUR Q5 YITA
g Wm3TI06TY

Jo Iaqumpy

66

Gadalaattl’ bkt ba

i i

B i B i s it I e o

R st 25 20

Table E

Algorithm D' (Traditional) for the Knapsack Problem with 10 Objective
Functions. (Time in milliseconds excluding I/0 but including
sort on an IBM 360/91)

Number of Sort Time Total
Problem variables Time Excluding Sort Time

St b S L

1365 50 26 39 65
1397 50 26 36 62
b 1348 50 27 57 84
{ 1326 50 27 72 99
‘ 1406 50 27 52 79
: 1366 50 27 73 100
s 1282 50 26 39 65
3
4 1340 50 26 60 86
1288 50 25 62 87
1468 50 26 44 70
Total 263 534 797
Average 26 53 80
Average/objective 3 5 8
function
2823 100 61 78 139
] 2772 100 64 75 139
] 2763 100 60 83 143
] 2945 100 61 62 123
1 2795 100 60 74 134
1 2706 100 62 84 146
g 2589 100 61 62 123
4 2992 100 61 78 139
% 2447 100 62 118 179
1 " Total 552 714 1266
' Average 61 79 141 t
L Average/objective 6 8 14 p
) function a
5 ‘
] 67 §

s et S i e S . kGl s v s 2 ik e o

S°S I S81 111 Ve abexaay
SS zo1 LYST 60TT 8€L Telol
b € S oL z€ 8¢ 00T zLse
1 9 1t S8T LoT 8L 00T SSLT
: 9 TT 9LT L6 6L 001 £982
8 ST tEE €Ee 001 00T ySLe
1 v L o1t 9g vs 00T 6092
S 6 €91 56 89 00T ri62
1 L €1 1 24 £sT z6 007 6£S2Z
w S ot ¥9T 68 SL 00T EELT
] £ 9 z6 14 =14 00T 6T9Z
3 8 ST 60€ 102 80T 001 zeLe
- S°¢ 9 69 14 0z abexaay
F SE 29 989 1317 €02 Te30%L
g S 6 €6 €9 o€ 0s 96€T 3]
4 € 9 Z9 4 4 (174 0s 9zZv1 3
: € 9 9s 9¢ oz 0s €921 3
3 v L L8 €9 ve 0s vEET :
L € S 1s SE ot 0s TSST
3 S 9% 62 LT 0s ozvt
1 9 18 v81 0stT ve 0s 9621
3 € S 9 ot 9T oS 82€T 3
3 r4 £ oz o1 o1 0s GEET
1 € S 187 14 o9t 0s TSt
3 {1’01 3 8 A Aog‘uou pPaATOS 8 3O oty 3X0S burpnyoxly QuwT] 3I0S soTqeTIeA watqoaxd
3 suotantos tewr3do sonyTeA JO ‘ON Te3ol awTy, Te30L 3O Iaqumpy ;
3 JO °*ON Te30l 3
- (16/09¢ WHI we uo O/I HUTPNTOX® SPUCOISTTITW UT SWTL) M
uot3joung aAaT3oolqQ snonutjuc) B Y3 TM worqoxd yoesdeuy oyl 103 ,q wyITIobTV 3
.
d a1qelL ;
1

> 2 =
I A e T s s S I 3 e -

. e . W Nt S n 3 il T R L O TR P .:,ﬂk

PR R

o et ol AL b i sl L R L U s s Lt b Rk S Al i it L R

VI. THE PARAMETRIC GENERALIZED ASSIGNMENT PROBLEM

Consider the problem:

min X) cijxij
xij-O.l iel jed
(a) T or, .x <b, R RS
jer ij7ij i
.Z xij =1 ¥ja
iel

where cij > 0, rij > 0, and bi > 0. This problem has been ieferred to
as the generairized assignment problem. Let the index set I denote a
collection of agents, and let the index set J denote a collection .f
tasks. Each tesk j is to be assigned to exactly one agent, and each
agent i may perform a collection of tasks as long as these tasks do not
violate the agent's resource, bi' The amount of resource which agent
i must use to perform task j is denoted by rij’ and the cost to perform

the task is denoted by cij The problem, then, is to assign each task

to an agent such that agent resources are not violated, and such that
the total cost of performing the tasks is minimized.

Various real world problems can be modeled accurately as gener-
alized assignment problems. These include scheduling variable length
television r~mercials into time slots, assigning software development
tasks to computer programmers, and scheduling payments on accounts
which require "lump sum" payments. See Ross and Soland [1974] for
other examples and motivations.

In this chapter we present an efficient branch and bound algorithm

(Ross and Soland ([1974]) for (A) which utilizes a Lagrangean relaxation

as the primary relaxation. Thus a linear programming relaxation is not

€9

B T D T o

PRS- PH T Y

ol mm L Sl

e e b b G i e i e o i L ais U ot

required. After this we consider three parameterizations of (A), namely:

F 4 Fork=1,...,K solve:
! min T L cijxij
v
; ‘ o) r, X <b, -h, viegl
B —-—
: ' (Pk) jed 13743 i ik
] X L. =1 vied
u pS iel 1]
K,
{ 5 5 For k=1,...,K solve:
E | min T T (+ f)X
] cLI . . ‘.
x,.=0,1 igl jEJ ij le 1]
i3
(R)) L r..x,, <»b viel
Rk jed ij7ij — 4
z x,. =1 vijed
iel 13
6) For v o e [0,1] solve:
min b3 I (c., + 6f,)x. .
x,.=0,1 ieI jed 13 . +J
1}
Q) 7 . .X,. < b, v igl
0 jed ijij — i
X xi' =,)l ¥V jeld
iel J
where hik' fijk' and fij are scalars.

Algorithms are presented for 4), 5), and 6), computational results
are given, and conclusions are drawn regarding the most efficient

algorithms for each parameterization.

A. An Algorithm for the Generalized Assignment Problem

Ross and Soland [1974] present an efficient branch and bound

algorithm for (A) which does ..ot use linear programming as the primary
relaxation. Rather, a relaxation is used which requires the solution
to a number of 0-1 knapsack problems. We present a variant of their
approach utilizing the concept of lagrangean relaxation (Geoffrion
[1973]).

Before stating the algorithm, the primary relaxation will be

developed. Consider the relaxation of (A):

min L z c..xi.
x,.=0,1 iel jeg 3 43
ij
(LGR,) E x..=1 ¥ je J.
1 . ij
iel

This relaxation simply ignores the agents' resource constraints, or
equivalently a vector B = 0 is assigned to these constraints, and the
term I B.(I r,.x,, -Db,) is placed in the objective function. Thus
. U ij7ig i
iel jed
(IGRl) may be solved as a special linear program by replacing xij=0,1

by 0 < x,, <1 . It is obvious that an optimal solution to the linear

ij

program (LGRl) is an integer solution which satisfies the constraint

xij=0,l . Call this solution xGUB . It is also easy to see that
optimal dual multipliers, Xs , for (LGRI) lie anywhere in the range

[c. .,c, .] where ¢, ., is the smallest c¢,. in column j, and ¢, . is
J i. ij i,)

1Y 1 2
the second smallest cij in column j. A second (and generally tighter)

relaxation is:

min (Z I c¢..x..)& I A (l- % x,.)

%;5=0/1 el jed jeg I iel

¥ 4 e T,

r x.. <Db,
955 ij ij — 1

71

T,

i o e L

which i3 equivalent to:

DXy - max ror (- ¢ 4%y
jed x,.=0,1 jeJ iel 3
i)
(LGR,)) T 5548 b, Viel
jed]

where 55 is chosen to be equel to c, 3 ¥ j ¢ J. Note that this
2
problem separates on I into |I| independent 0-1 knapsacks. Also it is

clear that all variables which are equal to O in xGUB may be set to O
in an opuimal solution to (LGRz). This follows since it is assumed

that rij > 0, and since the corresponding cost coefficient (XS = cij)

is less than or equal to O. Thus over all |I| knapsacks there are a

total of only |J| free variables. An optimal soiution to (LGRz) will

be caldel pos s

After introducing some additional notation, a branch and bound
algorithm w.ll be stated. Let S be the set of variables in a partial

solution. In other words, S = { xij | xij is assigned a value of 0

or 1} . Let L {3]|3egadd Xi5 " 1 for X;y € 5} . Let (A)

be as given earlier and let (B) be:

L ci A min I L cijxij
: .‘ = 3 »
xijeS xij 0,1 il JeJF
(B) x. .S
1]

2 X..=1 ¥vjed
iel +J <
xijts

Let (C) be:
72
= " B ke i bbb it i i o S Va5 el e

L3 s -l R s - o

S

Bl ok b e

il e

Lo’ e o e L e L e Vi o L et e T, A Ao sty YTy

X, - max z I (A, - ¢,)x, .
I % =0,1 jw_ie 1 133
F xij‘s F
ij
= <bh z r Vi I
I r, X X 1 €
. 13713 — 74 237 23
JeJF xljcs
Q=
xijts i

Let (C) be (C) with ., =0,1 replaced by 0 Sxy ol

Algorithm E:

1. Initialize tha candidate list to consist of (A), and let z* be a

large number. Set S = @ and JF = J.

2. Stop if the candidate Jist is empty: if there exists an incumbent,
then it is an optimal solution for (A), otherwise (A) has no
feasible solution.

3. Select a candidate problem (CP) from the candidate list using a

LIFO rule.
. . . GUB
4. Solve (B) for this candidate problem and get a so.utioi x ., If

v(B) > »* or no feasible solution is found, go to 2. If

xCUB 1] (i #;;) is feasible in (A), go to 9. Otherwise, find
S
a vector A, each component of which corresponds to a j € JF,

where XS is chosen to be the second smallest cij in column j

such that xij £S. If a X; does not exist for some j ¢ JF'
: . 1. G

set i* = {1|xigB = 1}, and go to 1ll.

5. Solve (C). If v(E)‘i z*, go to 2.

6. Solve (C) and get a solution xLGR. If v(C) > z*, go to 2.

LGR MOD MOD)

7. Try to modify x to x so that x (Linj) is feasible

S
in (A), and such that the corresponding objective function value

is equal to v(C). If successful, go to 10.

73

i i G oo 2 dad Al actuad gl Ao L Elin i i o Soui A RiatUib oo sl 2 T Locaid o sitien o

8. Separate (CP) into two new problems by Zinding that variable

which satisfies:

t,, ., = max (A, -c)b, - I r,.x.) /.,
1 LGR 3oy b e U -
x,. =1 25
& f=i

If there is a tie, break it arbitrarily. The new problems are

placed in the candidate list in the order (CPIxi.j* = 0) and

(CPIxi*j* = 1). Update S and JF for each new problem. Additional
variables may be assigned to 0 in (CPlxi*j* =1): a) ‘ij* =0
4 i * . = i >
if 1 # i* and g g S; b) X, %3 0 if X3 £ S and Ty
bi* - z ri*jxi*j for j # j*. Update S, and go to 2.
.4 ES
1*j
9. Set v{C) = v(B) and xMOD = xGUB.

10. An improved feasible solution for (A) has been found. Record

. MOD
this solution as the new incumbent, x* = x U(l'xij) and set
S

z* = v(C). Go to 2.
11. Add the problem (CPIxi*5 = 1) to the candidate list. Update S
and JF. Additional variables may be set to O: xi*j = 0 if

i i z ri*jxi*j for j # j . Update S,
X, ,.€S
1%]

d > =
x.*j £ S an ri*j b,
and go to 2.
In step 4, (B) is solved and the usual fathoming tests are
employed. If all fathoming tests fail, an attempt is made to tighten

~

the relavation ly solving (C). However if some X; r J o€ JF does not

exist, this implies that only one agent i* is available to handle task
j . Hence, xi*5 may be pegged to 1 in step 11. As a result of this
peg tu 1, additional variables may be pegged to O, thus hopefully ?

tightening the relaxation even further. If a peg to 1 is not possible, p

and all fathoming tests for (E) fail, then (C) is sclved in step 6.

74

i

" : Ao g b W i e e e s S

Note that Algorithm A is used to solve each individual knapsack. Of
. .. G
course, the knapsack algorithm need not be used for agent i if the x B

solution does not violate that agent's resource. 1In step 7, tasks

which are not assigned in the solution to (C) (this occurs since the

L xi, =1 ¥ j e J constraints have been relaxed) are reassigned to
iel

the available agent with the second smallest cost. If all such tasks
are reassigned, and the knapsack constraints are satisfied, then this
modified sciution is feasible and has an objective value precisely
equal to v.C). Thus a new incumbent is generated. In step 8 when all
fathoming tests fail, branching must occur. The branching criteria
uses a weighted penalty for not choosing an agent i* to perform a task
j* multiplied by the current amount of resource available to agent i*,
Note also tha' the ordering of the new candidate problems in the
candidate list is such that the xi*j* = 1 branch is investigated first.
Computational results are presented in Table G. The 50 variable
problem is taken from Ross and Soland [1974]. The nine versions differ
only in the agent resources is shown. All other test probleme were
generated per Ross and Soland. The rij,cij were randomly generated
with distributions U{5,25] and U[10,50]) respectively. Each bi was set

equal t 4*:J|/|I| + .4*{max I r,.x .} where x is an optimal
: . 1) 1)
iel jed

solution to (LGRl). The results in Table G show that the algorithm
is very efficient for most problems. Note that our algorithm improves
upon the Ross and Soland version for the 50 variable problems by
investigating fewer nodes and solving fewer 0-1 knapsacks. Couplnd

with Ross and Solana's results, we conclude that the algorithm is an

- o " it anSia Fow ity \nRAL Sy
o st &

S50 - LA e,

Sriah

.

Seeaol oo o

A Liadligh o b Cosdddie Litae it o g iniiberes Al

order of magnitude faster than other algorithus such as RIP30C which
is a general purpose 0-1 code, and IPNETG which is a branch and bound

generalized network code.

3., The Generalized Assignment Problem with a Finite Number of Right

Hand, 5idss

In this section we consider problem 4). By allowing the right hand
side to vary, flexibility is introduced into the model. This allows the
analyst to examine the effect of changes in agent resources. We begin a
formal analysis of 4) by investigating the problem dependent techniques
of chapter III. Then the factors affecting the scheduling of solution
priorities will be discussed, and three algorithms will be presented.
Finally, computational experience will be cited, and conclusions d~ wn
concerning the most efficient algorithm.

The use of reduction techniques in 4) does not appear to be

promising. We mention one such technique, and then point out its

shortcomings. Consider agent i and tasks jl and j2 . Let Mi 8
max {b, -h, } . The value M, is the maximum resource ava:lable
i ik i
k=1l,...,K
to agent i over all K problems., If r.. +r,. > M, , then
ij ij., 1
1 2
x,, + x., <1a1s a valid constraint for (P,) ¥k =1,...,K . However
i3, 11, = k

the addition of such a constraint destroys the structure of the p:ioblem,
and consequently the solutions to variocus relaxations (i.«. (LGRl)) are
no longer analytic in nature. The crux of the situation is that in
attempting to tighten the primary velaxation, the structure of the

problem is destroyed, and hence solution efficiencies are lost. Thus,

76

ymwwg-i,“rﬁ”‘l?'"’p,. AL e v

; ! certain reduction techniques can actually complicate the problem, and
b in fact their incorporation into an algorithm may reta:d efficiency.
We now consider feasibility recovery techniques. Suppose that we

have found a feasible solution x for (Pl) wh.ich is not feasible in (PZ),

Further, suppose that not all agent resources are violated by ; in (P2).
One approach is to reassirm tasks from an overassigned (1nfeasible)
agent one at a time such that each reassignment is made at the smallest
additional cost, and such that it is made Lo an agent with sufficient
resource available. Other approaches can also be devised ad infinitum,
Next are bounding problem reoptimization techniques. Suppose that
at a generic node in a branch and bound tree, (LGR2) has been solved to
optimality for a candidate problem associated with (Pl). Can this

3 solution be reoptimized efficiently for the candidate problem at that

node which currespoads to (PZ)? In general the answer is no. There
are twr, reasons fo: this. First, additional pegging of variables to

0 by infeasibility (as in step 8b of Algorithm E) may occur if resources

are reduced from (Pl) to (P2). Conversely if resources are increased,
variables may r.o longer be pegged to 0. Of course if feasibility pegs

are not enforced, tnis reasoning does not apply. Second, as we have

e eota-ne on

seen in chapter V, solving closely related 0-~l1 knapsacks is best
accomplished by solving them separately. We observe, however, that if

. . . . LGR . L
the change in the feasible region is monotone, and x remains feasible

in (P2), then xLGR is optimal for the céqdidate problem corresponding

to (P2). B
Wide range bounding techniques may;also be employed. Once again

suppose that a candidate problem relaxation associated with (Pl) has

77

i i e

SETCE S S

been optimized at a generic node. We wish to calculate a dual bound
for the candidate problem associated with (Pz) at that node. Such a
bound may be calculated (cf. chapter III), but one must be careful to

use ‘''good” dual multipliers in calculating the bound. (Dual mul+ipliers

are said to be "good" if the corresponding Lagrangean relaxation, which
uses these multipliers, generates a tight bound,) If (LGRZ) has been
solved to optimality, then "good" dual multipliers are not readily
available since (LGR2) consists of |I| independent 0-1 knapsacks. It
is generally true that deriving "good" dual multipliers for an ILP is a
difficult task. Nonetheless, if (EEE;) has been solved, dual multipliers
for the continuous relaxation are available, and a dual bound may be
calculated for the candidate problem corresponding to (P2).

We now turn to the factors affecting the scheduling of solution
priorities. Tightness of the primary relaxation as a function of the

right bzond side can best be explained by using the formulation:

min z)X ci.xi.
x.,=0,1 iel jedJd 34
ij
(Sb) T XX <b Viegll
jed 34
b X5 = 1 ¥ijeld
iel J

where b is a non-negative scalar. As b increases, the solution kLGR

for (LGRS) comes closer to feasibility because the knapsack constraints

become less constraining. In fact, for a sufficiently large value of
xLGR. ’ . . q :

b, is feasible in (Sb), and hence is optimal in (Sb). The rela-

" " b
tionship between v(Sb) and V(LGRZ) is indicated in the figure below.

78

) - i el

N

PR Ar

A

Sadn

v(-)

(Note that the graph will not be continuous, in general, but is drawn
that way for the sake of simplicity.) By referring to Table G for the
50 variable problems, we see that as the agent resources decrease, the
number of nodes investigated generally increases. This empirical

behavinr, when coupled with the graph above, substantiates the belief

that as the tightness of the primary relaxation deteriorates, a problem 1
becomes more difficult to solve (in terms of the number of nndes 3
f
investigated) . §
1

The behavior of the individual integer variablecs in an optimal
solution is difficult to categorize for this particular parameterization.
As resources are reduced, some tasks may De reassigned to other agents.
However it is not a simple matter o deduce which tasks are reassigned.

The persistence of scratch trees as b varies seems to be good,
empirically speaking, for small changes in the right hand side. This

is because the solution to (LGR?) remains rather stable, and in the

solution to (LGRg) the "most attractive" variables tend to remain at

a level of 1. Since the branching rule is to branch on the "most

LGR
X

ORI o LR e Ty

attractive" variable which is equal to 1 in , the ordering of

potential branch variables tends to remain stable, and hence the scratch 7

trees remain stable. The cause of instability in general is the

pegsing of variables to 0 by infeasibility. f7This may cause xGUB to

79

e S ST TN AR

Baciae s o Las o ok

. e e

T Y B ey SV Yoo [y Ty TN TV YIS Y

change, which in turn changes xLGR. We note that if the pegging by
infeasibility were not implemente” the scratch trees would tend to be
more stable. Of course this stability is bought for the price of
larger scratch trees, since fathoming power at a node is reduced when
the logical pegs to 0 are not enforced.

Next we present three approaches for solving 4), each of which uses
Algorithm E as a primary building block. The firs: Is a serial approach
which utilizes an initial separation consisting of the fathomed nodes
from the previous (Pk)' Recall that we define (Pk) and (Pk+1) to be
relatively monotone if !(Pk) E{F(Pk+l). This approaeh is similar in
spirit to Algorithm B of chapter V.B .

Algorithm F:
1. Set k = 1. Solve (Pk) by Algorithm E getting an optimal

solution (x*)k.

2. If k > K, stop. If (Pk) and (Pk+1) are relatively monotone, and

: . 2 ; :
if (x)k € F(Pk+1), then (x)k is optimal in (Pk+l)' so let
k = k + 1, and return to the beginning of this step. a
., Set k =k + 1, If k > K, stop.

4, Use a feasibility recovery technique on (x*)k_1 to fird a good

ST T T e Yo e

feasible solution for (Pk). Call it (x*)k and its corresponding

wnjective value, zi.

5. Use the frontier of fathomed nodes from (Pk-l) as an initial ?

candidate 1list, and order the list in increasing order of optimal
relaxation value calculated for the (Cpk-l) problems. With this
ordered candidate list solve (Pk) using steps 2-11 of Algorithm E.

Go to 2. ;

80

v el Ral il)
i ol e, A Rk ok e e 2 o e b e i b Iy

Ll M waktas a e GiaAant : i Bt A.'AJ

—reTYT

Fidxd T

B b L e ot b R e i e i i b i b et e i b et

Note that under monotonicity, step 2 may allow one to avoid explicit

solution of a particular (P, .). Step 4 can be expanded to allow a

k+l
feasibility recovery technique for (pk+l) to be invoked whenever a
feasible solutiun for (Pk) is found. This option is incorporated in
our computer implementation. In step 5 if (Pk) and (pk+l) are
relatively monotone, it may be possible to "automatically" fathom a
candidate problem if v((CPk_l)) > zi . This follows since

V(Pk) _>__v(Pk l). Also of course an automatic fathom occurs if

¥r. X.. >b, - h, for some i € T.
jij i ik

X, .<S
13

A second approach is lexicographically scrial which is similar in
spirit to Algorithm C in chapter V.B.
Algorithm G:

1. Set k = J..

2. Initialize the candidate list to consist of (Pk) vVk=1,...,K.
Individual incumbent solutions are denoted by (x*)k and solution
values by zﬁ. Set JF =g, Sk =fgvk=1,...,K. Go to 4.

3. Setk =k + 1. Ifk >K, set k = 1.

4. Stop if the ~andidate list is empty: (x*)k is an optimal solution,
and zi is the optimal value (if they exist, otherwise (Pk) is
infeasible) for v k = 1,...,K.

5. If k > K, set k = 1. Select a candidate problem (CPk) by a LIFO
rule. That is, choose the last candidate problem in the list
which has a k subscript. If none exists, set k = k + 1, and
return to the beginning of this step.

GUB

6. Solve (B)k for this candidate problem and get a solutior. x

If v((B)k) z_zi or no feasible solution is found, go to 3. If

81

Rt b ad dat ooty 4 gty)

R o,

e O

o el o

ki et it

‘
i

T

b

10.

b

Kt o

11.

12.

P, T T T i o a L "3 i, o R

xGUB ” (U X

vector A, each component of which corresponds to a j ¢ JF' and

) is feasible in (Pk), go to 12. Otherwise, find a

where A, is chosen to be the second smallest c,, in column j such

3 ij
that xij £ Sk' If a Aj does not exist for some j ¢ JF' set
i* = {i|x§§gB =1} , and go to 13.
Solve (E)k. I1f v((E)k) 3_2;, go to 3.
LGR
Solve (C) and get a solution x . If v((C)k) z.z;, go to 3.
Try to modify xLGR to xMDD so that xMOD Ucu xij) is feasible

S
in (Pk), and such that the corresponding objgctive value is equal

to v((C)k). If successful, go te 12.

Select a branch variable by finding:

t,,.,=max (A, -c,)*(b, -h,_ - L r,.x . /r,,
LR
i*j LGR j ij i ik - 2323 ij
x,, =l 23
+J =i

If there is a tie, break it arbitrarily. Add the problems

(cp, |x =0) ¥h=k,...,Kand (CP [x,, ., =1) Vh=k, ..K

J

to the candidate list. Update JF and Sh ¥ h

ixg*

variables may be pegged to 0 for individual (Pk) as in steps 8a

and 8b of Algorithm E. Update Sh ¥ h=k,...,K and go to 4.

Set v((C)k) = v((B)k) and xMOD = xGUB.

An improved feasible solution to (Pk) has been found. Record

this solution as the new incumbent, (x*)k = xMOD'J (U xij)'
S
and set z* = v((C)k). If k < K, use a feasibility rec%very

technique to find a feasible solution for (Pk+). If this

1

solution improves the incumbent, set it equal to (x*)k+l ard its

3] *
objective value to ZE, " Go to 3.

Add the problems (Cphlxj*§ =0) vVh=k+l,...,K and (cphlxi*g =1)
82

TR

k,...,K. Additional

PR R TR g Pt)

b T SRR e o

PR, < h

T

J
i . o Bk DI ORPC VOIS SRR T

A b it e el e i bt b LA

; ¥h=Xk,...,K. Update JF and Sh ¥Vh=XkX,...,K. Additional ;

¥

; variables may be assigned to 0 for individual (Pk) as in step 11

of Algorithm E. Update Sh ¥vh=%k,...,KL and go to 4.

Basically the procedure is to concentrate on (Pl) in fathoming tests

rmasr

and branching criteria until fathoming for (CPl) occurs at a given

node. Then at that node fathoming tests and branching criteria are

o A

applied to the corresponding (CP2). Note that if (Pl) and (Pz) are

relatively monotone, and if v(CPl) > 25, then (CP2) is automatically

fathomed. Automatic fathoming also occurs if no feasible solution
to a relaxation can be found. 1In step 13 xi,g is pegged to 1 for (CP,).

However the peg may not be valid tor (CPh), h = k+l,...,K . Thus,

(CPh|xi*; = 0) and (CPhlxi*; =1) v h =k+l,...,K are added to the

candidate list. It is clear, however, that if relative monotonicity

holds between, say, (P,) and (P,), n 5 k, then (CP | % > = 0) need not
k h hl™i*]

be added to the candidate 1list, E

A third approaci for 4) is the serial method where each problem is

3 solved from scratch:. This approach is similar _o Algorithm D in chapter

kg3

3 V.B, and it may be dubbed the traditional approach.

ik AR ekt

Aloorithm H:

R e b i £ 2t

i 1. Set k = 1.

2. Solve (Pk) by Algorithm E getting (x*)k.

PP RO

]
‘ 3. Ifk > K, stop. If (Pk) and (Pk+l) are relatively monotone, and

? if (x*)k € F(Pk+1), then (x*)k is nptimal in (Pk+1), so let

k =k + 1, and return to the beginning of this step. :

4. Set k =k + 1. If k > K, stop.

i o antie e

5. Use a feasibility recovery technique on (x*)k_l to get a good
feasible solution for (Pk)' Ccall it (x*)k, and the corresponding

*, Go to 2.

objective value, zk

Alternatively, step 5 may be placed in step 10 of Algorithm E
so that the feasibility recovery technique is invoked for (Pk+l)
whenever a feasible solution for (Pk) is found. This option is used
in our cowmputer implementation.

Computational results for Algorithms ¥, G, and H are given in
Table H. Problems were generated randomly as explained in section A.
The first right hand side (for (Pl)) was generated as explained.
Succeeding right hand sides were obtained by reducing all rescurces

by ¢pproximately 2.5% for the 250 variable problems and 5% for the

500 variable problems. Table I gives the ratics »f the relative times
for each algorithm. Note that Algorithm F generally dominates
Algorithms G and H, except for the 50 variable problems where Algorithm
G was best. This general domination by Algorithm F becomes more
pronounced as the number of variables increases. This behavior is
mainly due to three factors. First is the effect of bookkeeping and
setup costs. As problem size increases, computation time for the
primary rela. ..ions (LGRl) and (LGRZ) increases, while bookkeeping and
setup costs remain about the same. Second, the monotoni:ity of the
feasible regions for this parameterization allows the automatic
fathoming tests to be used. If this test is succescful, the primary
relaxations need not be solved. Third, tree stability tends to be

good for this parameterization due to the stability of the xGUB and

L . . , :
X GR solutions as the right hand side varies.

S R R e S e R

R

b sa et i o Siitiadebt S b B dat b Ul i e i b i B e i e Bt

9]

The Generalized Assignment Problem with a Finite Number of

Objective Functions

In this section we consider problem 5). Basically, Algorithms
F, G, and H remain the same with three exceptions. Call the modified
algorithms F', G', and H'. First, the feasibility recovery technique
is modified so that it simply costs out a feasible solution to (Rk)
using the objective function for (Rk+l)' Second, the monotonicity
test is no longer pertinent, and third, the automatic fathoming test can
no longer be used. However, note that the pegs to 0 and 1 rem~in
Valil for v k = 1,...,K , since these pegs are based only on feasibility
considerations.

We remark that reduction techniques as examined in Section B do
not seem to be promising for much the same reasons. In addition
bounding problem reoptimization and wide range bounding techniques
would seem to be inefficieit as well, due to many of the reasons
given in section B.

Analysis of the tightness of the primary relaxation in section B
tends t confirm that the tightness is a function of how constraining
the agent resources are. Since in 5) these resources remain constant,

: SNDn GUB
the differences in tightress would seem to lie in the initial x

] . GUB .
solution for each (Rk), k =1,...,K . If a particular x solution
"almost'" satisfies the knapsack constraints, then one might surmise

- . i - q . GUB
that the initial relaxation is tight. Alternatively, if an x

solution heavily violates the knapsack constraints, then the relaxation

will be loose. Behavior of the individual integer variables in an

85

S

e B o

Gt Sp e oot

P e Ty

m " ik
MRaR Mo ue v o o i be s e G amb cm L biad riaia e i B L2k e it o e el L 2

optimal solution seems to ! + as obscure as for 4). The stability of

scratch trees seems to det.:. urate for 5) as opposed to the stability

for 4). we propose the following reasons for this behavior. Branch

variables are chosen from among the set of variables for which x??R =1 .]
Now xi?n = 1 (in (LGRZ)) implies that xiga = 1 (in (LGR,)). However, i

when the objective function is varied from (Rl) to (RZ), say, xGUB i

. L]
generally changes also. This in turn implies that x GR varies.
Further, xLGR may vary due to the values Xg which are generated directly
from the objective function. §

We now present a sufficient condition for an optimal solution to

remain optimal for a certain parameterization. Suppose an optimal

solution, x*, for (A) has been found. Consider the problem (A') which

for some task j. € J has the costs ¢!, =c,, +d, ¥i e I where
1 131 i), i

di >0V¥ieI. Thas the cost for agent i. to perform task j1 is

1

increased by di units. Such an occurr-ance could be due to increased

1
processing cost for task jl . We have the following result.

’

Theorem 12. Suppose x¥ . = 1. If v(A) + d i_v(AIxi . = 0) + min d,
11 ! 171 i)t
then x* is optimal in (A').

Proof: Since I «x = 1 in any optimal solutinn, and since

. ij
iegl 1
v(A|x, . = 0) > v(A), any optimal solution to (A'|x, . = 0) must
11 1
have a cost of at least v(AIxi . =0) + min d, . But x* remains
171 i
feasible in (A') with a cost of v(A) + di .~ Hence if the hypothesis !
1 i
holds, x* is optimal in (A'). || {
9
.a
Note that any underestimate of v(A|xi 3 = 0), such as the value 7
1-1

v(A), may be used in the theorem hypothesis.

86

i e i i 2

I Y S N P R I P R TR Y Vi S Y opepr R el ol i R

LR TEEY

?

Two problem sets were generated per Ross and Soland (1974). For
the first set, additional objective functions for each problem were

; generated randomly using the original objective function. One third

of the cost coefficients were varied by 210%, one third by +5%, and

one third remained the same. Table J gives individual problem results

b (11-18), and Table K gives ratios of ccmputation times for the

; algorithms. We see that generally Algorithm H' performs the best,

with Algorithms F' and G' sometimes requiring more than twice as much
computation time. This was found to be attributable to tree lnstability.

That is, the individual scratch trees were not stable from or.. problem

to the next. This points out the importance of scratch tree stability

iy o add

in foraulating parametric branch and bound algorithms. Basically the

evidence gleaned from these test problems is that the set of fathomed

nodes from (Pk) is not a "good" initial separation for (P, .). We

k+1
conclude that Algorithm H' would seem to be preferable for this
particular parameterization.

In the second problem set, an additional objective function was

h gt i chBe iR S . s

generated by increasing all costs for one agent by ius. Table J gives

individual problem results (19-23), and Table K gives ratios of
3 computation times. For this set of problems, Algorithm G' dominates

; Algorithms F' and H'. This contrasts with problems (11-18) where

Algorithm H' gererally was best. The reason for the difference is
greater tree stabiiity which is a result of the less "radical"

parameterizatisn in problems (19-23). Since costs are raised by 10%

for only one agent, the xGUB and xLGR solutions tend to remain stable

at a given node, and hence tree stability is more pronounced.

e

87

T TR T

ad o

T ST T

o YT
- v o oy e e ntd b Caint i s LD N
Y R et i A O i

In conclusion, Algorithm H' seems to be best for more "radical"
parameterizations, while Algorithm G' tends to be best for "minor"

paramcterizations.

D. The Generalized Assignment Problem with a Continuous Objective

Function Parameterization

In this section we consider problem 6). Our goal is to find
optimal solutions for all possible weightings of two different objective
functions.

Due to the relatively poor results for Algorithm F' in section C
we did not code an approach using the serial method with an advanced
initial separation. Ar algorithm corresponding to G' was not developed
because of the inherent difficulty involved in choosing values of 6 at

which to solve a rxelaxation at a given node. Only the approach

corresponding to Algorithm M' was coded. Algorithm H" is similar to
Algorithm D" in chapter V.D with the exception of using Algorithm E
instead of Algorithm A in step 2 and replacing LB(8) by UB(8). The
reader is referred to chapter V.D for an explanation of the reasoning
behind this approach.

Test problems were generated per Ross and Soland [1974] in
precisely the same manner as given in section A. The fij coefficients

were generated randomly from a U[10,50] distribution which had a 50%

correlation coefficient with the corresponding c, ..
Computational results are shown in Table L. Note that just as

with the 0-1 knapsack results of chapter V.D, the namber of problems,(Qe),

solved 1is slightly less than twice the number of optimal solutions

TR,

P

il

e

found over ¥ 0 ¢ !0,)). This is further substantiation of the

effectiveness of the method for solving the continuum of problems

(g,) v o e [0,1].

89

NG T R PO L o D

2o i

TerTETRTTT T Ay T ——
o Wi e Gy

Ty

_ L6z* 069 LOE €€€” sZL 7801 0s o1 S 8y
ﬁ Svo° 62 1€ 150° 62 o€ 0S ot S 95

. Zvo- Lz 1€ 6v0° 6Z veE 0s 01 S vo

” vv0° 62 1€ 650" LE 187 0s ot S zL ;
H 110" S L cwo- S L 0s ot S 08 !
W 600° S S ST0° S S 0s (0} § S 88 Q

. 810" 6 6 910" 6 6 0s o1 S %6]
; s10° L L zto* L L 0s o1 s voT
F £00° 1 1 €00° 1 1 0s 0T S ZTT]

9 [tL6T] pueTOS pue ssoy

1 wox3 waTqoxd aTqeTI®A 0§ T
: auwrty SI9pON syoesdeuy 1-0 JuTL S8pPON s)oesdeuy -0 SIIqeTIBA SYSPL S3uULby wWerqoad

M Te30L 3o 3O Iaqumpn Te390L 30 3O Iaqumy

w Zaqumpy Jaquny

3 (16/09¢ WaI) (0099 2a2)

m 3 uyiztaobty wYITIODTY puURTOS pue Sssoy

(0/1 Bbuirpniox® Spuodoss UuTl Surl)
d wyltIxobiy x03 s3ztunsay yeuorieindwo)d

O °1qeL

T

Ltk i et b Ly o ot A R R I N T Y WP TV & ot o R onso bl i o Aiiaa 1 = i i S ek s R o el ok M a3 1o arid ati) G TR Ty Mo,

T

ot

&8

] 080° 61 oz 00s os ot zoT
1 120°1 L8T v1s 00§ 0s ot vs
w oLT"T So€ S 00S 0s o1 06
3 0s0° 11 9 005 0S o1 8
zyT” €€ 1S 00S 0s o1 Z-L6
0°6< - - 00S 0s 01 z8

Lz0" 1 z 005 0s o1 L5

€91° LS 6€ 0s2 0S S 191

zstT" 6b zL 0sz 0s S 181

: v10° 1 z osz 0s S SoT

£LT” 17 95 0sz 0s S ZLT

£10° 1 1 0sz os S 9Lt

: oLt* 15 19 052 0s S o1

v10° 1 z - 0s2 0S S LT

suatqoad pejeasuab ATuopuey

PUITL SePON syoesdeuy [-0 SO[QeIICA Sise], s3yusby wWalqoag
T1°301 3o JO Iaqumpy
I9qumy

(16/09¢ WHI)
I wy3TIOohbTVY

(penuT3UOd) 9 STqeL

2 3uin

'y
y

-
&
3
b

s

e o e i i pea i i

A & ol f b e ot haha i i bt b TR [V wmn

Takle H

Comparison of Algorithms F, G, H for the Generalized Assignment Problem
with 5 Right Hand Sides: Monotone Feasible Regions
(Time in seconds excluding I/O on an IBM 360/91)

|
|
]
|

+
Algorithm F Algorithm G Algorithm H
- ggial) méierial) mgg%tional)
Agent of Total of Total of Total {
Problem Resources Nodes Time Nodes Time Nodes Time

A. 50 variable problem from
Ross and Soland (1974]

T TR e PN AT

& 1. 88 5 .009 5 .008
80 2 .011 5 .010 p
7. 41 .077 29 .044 i
54 7 .017 27 .042 ;
& 56 " 19 .031 29 .045 3
Setup . .011 p— =007 b
Totals 74 .156 78 .110 95 .156 :

B. Randomly generated 250 variable]
problems with 5 ayents and 50 tasks

2. 185 3 .018 3 .015
180 o* 0 0% 0

175 55 .189 57 .200]

170 o* 0 o* 0 i

165 45 .141 51 .175 :

Setup .023 - 2023 :

Totals 103 371 146 .387 111 413 j

3. 185 21 .064 21 .065 5

180 0* 0 o* 0 :

176 3 .009 41 .155 i

172 60 .240 45 .160 .

167 o* 0 o* 0 i

Setup - .022 — .023 ;
Totals od .335 228 .527 107 .403

o 179 1 .007 1 .004 !

174 25 .070 25 .073 !

170 o* 0 o* 0 1

165 o* 0 1 .006 -

160 o* 0 1 .006]

ff Setup _ 021 __ 0 |

Totals 26 .099 65 .135 28 .108 3

+ Due to the nature of the lexicographic serial approach, computation

times for individual problems cannot be broken out. i
* Optimal solution from previous pcoblem is feasible, hence optimal.

Feasibility generator time plus setup time.

W
Ll

92

g

T E———

Lo Dk e Bt

Table H (continund)

Algorithm F Algorithm G Algorithm H

Number Number Number
Agent of Total of Total of Total
Problem Reitources Nodes Time Nodes Time Nodes Time
S. 195 1 .007 1 .005
189 1 .006 1 .005
185 1 .007 1 .007
161 55 .224 55 .210
176 38 .128 43 .168
Setup - .021 .020
Totals 96 .403 83 .304 101 .415
6. 175 41 .107 41 .109
170 o* 0 o* 0
166 31 .101 43 .111
16l 35 .103 57 .160
157 221 .787 253 .920
Setup .030 .032
Totals 328 1.128 459 1.391 394 1.332

C. Randomly generated 500 variable
problems with 10 agents and 50 tasks
7. 102 1 .009 1 .006
97 1 .007 1l . 006
92 1 .011 1l .006
87 21 .104 21 .080
82 25 .080 75 .270
Setup — .042 — 042
Totals 49 .252 100 .365 99 .410
8. 107 1 .008 1 . 006
102 1l .007 1 .006
97 33 .146 33 .125
92 16 .078 51 .206
87 39 .242 63 .387
Setup _ .047 .047
Totals 90 .528 129 .586 149 .777
9. 95 11 .031 11 .028
90 o* 0 o* 0
85 1 .008 11 .028
80 23 .067 33 .080
75 1 .005 17 .060
Setup ___ .045 — -044
Totals 36 .156 78 .221 72 .240
93
: - i hiao = g Ad % v : Nt s . o

OGO I T « S U GRS SO

B i Loogics - 0

- X a b
& o by ot & e s buis " B ot (o ain e ¥ 7
e EPETp 3 Ll e ey Mbat acadio s bt i fagde o o dniat bl ottt b o p 2l L s il o T ey e w——

' e
;?
,i
Table H (continued)

} Algorithm F Algorithm G Algonrithm H

h

k Number Number Nr'nber 4
& Agent of Total of Total of Total 4
' % Froblem Resources Nodes Time Nodes Time Nodes Time

t A
E b 10/; 112 1 .007 1 .006 4
i % 107 17 .057 17 .050 4
;I' . 102 5 .021 19 .08:]
I 97 35 .142 47 .200
A 92 8 .026 47 .198
3 p Setup — .040 - .040

- ¥ Total 3 66 .292 110 .417 131 .575

Table I

Ratios of Computation Times for Algorithms F, G, H with H Scaled to 1,

Number
of
Problem Variables Algorithm F Algorithm G Algorithm H
{Serial) (Lex.Serial) (Traditional)
1. 50 1.00 .67 1.
2. 250 .90 .94 1.
3. 250 .83 1.31 1.
4. 250 .92 1.25 1.
5. 250 .97 .73 1.
6. 250 .85 1.04 L.
5 75 500 .61 .89 1.
8. 500 .68 .75 1.
9, 500 .65 .92 1.
10. S00 .56 .73 1.

94

” e el b 3 T ey -
T i e 2 it " 3 TP TR T Mt leainay ptad b TV T IV T e Y - wporw gy

Table J

{ Comparison >f Algnrithms F', G', H' for the Generalized Assignment
- Problem with a Finite Number of Right Hand Sides
(Time in seconds excluding I/0 on an IBM 360/91)

Algorithm F’ Algorithm G** Algorithm H'
? (Serial) (Lex.Serial) (Traditional)
3 Objective Number Number Number
/ Function of Total of Total of Total
Problem Identifier Nodes T.me Nodes Time Nodes Time
A. Randomly generated 250 variable
4 problems with 5 agents and 50 tasks with K = 5
11. a 1 .008 1 .007
b 1 .012 1 .007
c 1 .012 1 .007
4 1 .015 1 .007
3 e 1 .015 1 .007
Setup _ 022 _ .018
Totals 5 .L84 5 .056 5 .056
3 12. a 43 .115 43 .080
! b 22 .068 1 .007
c 22 LO5¢ 1 .007
d 22 .£32 1 .007
e 42 .095 21 .040
Setup —_ .030 _ .028
Totals 151 .416 178 .384 67 .159
13. a 455 1.630 455 1.192
) b 377 1.372 377 .905
c 881 3.056 665 1.600
4 d 429 1.376 213 .511
e 754 2.888 105 .252
Setup .030 .030
] Totals 2906 10.322 2245 5.388 1815 4.390
14. a 1 .009 1 .007
b 1 .015 1 .007
c 1 .012 1 .007
d 1 .01% 1 .008
; e 1 .011 1 .007
Setup = .022 . .023
1 Totals 5 .084 5 .056 5 .059
3
" + Due to the nature of the lexicographic serial approach, computation

1 times for individual problems cannot be broken out.
p # Feasibility generator time plus setup time.

rrﬂ"‘-i‘b{'ﬂl ALl sl

b
E

Table J (continued)

=

.

96

. Algorithm F' Algorithm G' Algorithm H'
3 £ Objective Number Number Number
; Y Function of Total of Total of Total
E ; Problem Identifier Nodes Time Nodes Time Nodes Time
i B. Randomly generated 500 variable
E problems with 10 agents and 50 tasks with K = 5
15. a 51 .181 51 .112
' b 156 .583 71 .156
c 162 .517 49 .108
d 94 .260 23 .051
e 60 .179 25 .550
Setup . .040 .129
Totals 523 1.760 512 1.251 219 1.106
lé6. a 49 .192 49 .162
b .25 .111 1 .006
c 139 .617 69 .228
d 238 1.202 143 .472
e 60 .230 1l .006
Setup - .050 = =124
Totals 511 2.402 313 1.160 263 .998
17. a 211 .802 211 .780
b 708 2.847 301 1.130
c 388 1.836 355 1,311
d 222 .915 363 1.342
e 839 4,103 599 2.224
Setup .098 .124
Totals 2365 10.601 1589 v.ud2 1829 6.911
18. a 89 .453 89 .312
b 59 .236 41 .144
c 52 .215 35 2123
d 842 4.003 370 1.330
e 110 .653 79 .277
L Setup .102 .112
5‘ Totals 1152 £.662 1781 6.228 623 2.308

i Bt Lt Rl ki s TV, TR T e 2T TWVITTETY Y

Table:J (continued)

Algorithm F' Algorithr G' Algorithm H' f
Objective Number Number Number }
Function of Total of Total of Total i
Problem Identifier Nodes Time Nodes Time Nodes Time :
t b
i C. Randomly generated 250 variable ;
[problems with 5 agents and 50 tasks with K = 2 5
E’ 19. a 19 .075 19 .069 ,-
, b 10 .051 19 .082]
;-, Setup . .011 _ .007]
Totals 29 .137 29 .093 38 .158 ;
5
20. a 63 .219 63 .220
1 b 104 .453 85 .340 ;
‘ Setup .011 [.012 4
Totals 167 .683 117 .317 148 .572 41
} 21. a 73 .312 73 .315
b 59 .299 87 .374 |
Setup . .015 _ .0.5
Totals 132 .626 118 .369 160 .704
4
22. a 35 .168 a5 .163 ;
b 114 .502 139 .629
] Setup .012 L .013 :
F Totals 149 .682 155 .591 174 .805
F §
' 23. a 39 .173 39 .168
b 24 .109 43 .194
: Setup . .012 . .011
; Totals 63 .294 63 214 82 .373
i
]
,,z
j 4
97 3

-

EAN - St o e’ A bl ol

T

Table K

Ratios of Computation Times for Algorithms F',G',H' with H' Scaled to 1.

Number

Problem Variables Algorithm F' Algorithm G' Algorithm H'

(Serial) (Lex.Serial) (Traditional)
11. 250 1.50 1.00 .
12. 250 2,46 2.27 1.
13. 250 2.35 1.23 1.
14. 250 1.44 .95 DI
15. 500 1.60 1.13 1.
16. 500 2.41 1.16 1.
17. 500 1.53 .87 1.
18. 500 2.45 2.70 1.
19. 250 .87 .52 1.
20. 250 1.19 .55 1.
21. 250 .89 .52 185
22. 250 .85 .73 1.
23. 250 .79 .57 1.

98

A T R perr

Catddnc .

Attt ing

ST 6¢C 44 6l 0sc 0s S "ot

m 6 91 88°¢ ET1ET 05z 0S S 62
6 | A4 TL°s T2LT 0se 0s S 14 pA
: 9 18 90°L 66€EC nsz 0s S ‘Lz
1
m 1A Lz z6* T0€ 0se 0S S ‘9z
w 1T 12 ze- 184 0se 0S S ‘sz
w vl Lz vz z89 0sT 0S S "ve
Z.Suoiug 103 P3ATOS 6 3O |wTL SSPON safqetaen syser s3uaby uaTqoxd
% suot3inTos Tewtido sanfep jO °*ON Te2015 Jo *oN

1 30 ‘*oN Te3ol

] (16/09€ WEI Ue uo O/I Burpnidoxe® SPuUOddS UT SWTIL)
uoT3Io2UNg 9AT3IO3LQO SNONUTIUOD B Y3 TM wWRTqold IUSWUBISSY PazTTexauds ayl Xo03 ,H WyITIOBTV

Ll el el

T 9TqelL

(o bhas

T
R

i
i

S Sarans b - g ool <8

5

e

il ich o L b Sttt hel b beges b on - vt esati i) o iR CR ol 0 Mt L b e e T e i b Sohid bhacim L ab b Do st e g

VII. THE PARAMETRIC CAPACITATED FACILITY LOCATION PROBLEM 1

Consider the problem:

min z I c..x,. + L fy
xijz_o iel jed 13713 ter ' !
(+) yi-O,l L X,, <8S.y ¥iegl :
. i3— "i7i ;
Jed 1
I N., =D, Vied 3

where cij > 0, fi > 0, Si > 0, and Dj > 0. This problem is often

referred to as the capacitated facility location problem. The index

set I denotes a collection of potential facilities (or plants or ware-

houses), and J denotes a collection of customers which are to be serviced

by the facilities. The maximum throughput for facility i is Si' and Dj
is the demand attributable to customer j . The cost, cij' is the
transportation cost for supplying one unit of demand to customer j from
facility i. The fixed cost, fi, is the cost of opening facility i .

A great deal of research has been devoted to this particular
problem class. An exhaustive survey on the subject is given in El-Shafei
and Haley [1974}. Geoffrion [1974b] presents an up-to-date catalog of
current solution methodologies and computer codes available for solving
various formula*ions of the facility location problem. Quite recently
Akinc and Khumawala (AK) (1974]) devised an efficient branch and bound
algorithm which has dramatically reduced computation times for (P) over
existing algorithms.

In section A we shall present a branch and bound algorithm for (P)
which is comparable in computation time to AK's algorithm for moat test

problems, and improves upon their results for other test problems. 1In

100

section B we shall present an approach for solving the general parametric
capacitated facility location problem:

7) Fork=1,...,K s80lve:

l:i;: P I e
(P,) y;=0.1 £ Xig < (s, + T,)y, Viegl
jeJ
121 xij = (Dj + Ejk) vVied
where dijk' gik' Tik' and Ejk are scalars.

A. An Algorithm for the Capacitated Facility Location Problem

Consider problem (P). We shall begin the analysis of this problem
by presenting basic, well-known results, and then some new results will

be proved. After this, an efficient algoritiuu will be stated, and

computational results will be cited.
Sa [1969] observed that in the continuous relaxation
of (P), namely (P), where 0 ¥y < 1 replaces Yy 0,1 , it is possible

to substitute the Yy variables out of the problem. That is, let

y; = z xij / Si . This may be done since for any optimal solution

_ _Jed - -

(x,y) to (P}, we necessarily must have [xij = Siyi ¥iel . The
jed

substitution is carried out by replacing the supply constraints by

I x,, f-si ¥ i ¢ I , and the objective function by

jed 1]

min I I (c,.,+f./5)x,. . It is easy to see that the resulting
. : 1771775

xijz_o iel jed

problem is a transportation problem. Hence, (P) may be solved using a
transportation or network algorithm rather than a linear programming

algorithm. This allows for significant savings in computation time.

101

|
{

i

Ellvein [1970] gives the following result. Let (P,) & (P|y, = 1

viel.

Theorem 13. If v(Pnlyi =0) - v(PA) > 0 , then the optimal solution
o

value for (P) is not affected by setting y, *© 1.
o

Basically this result states that if the added transportation cost
incurred by closing facility io is greater than or equal to the fixed
cost of opening facility io' then facility i° may be fixed open in an

optimal solution to (P).

AK [1974] give the following result. Let T, 4 {jlci e min cij}
o o i

and for ¥ j ¢ T, let A 4 min ¢ . The index set T, 1is that set of
i 3 ij i
o 1#10 o]

customers j for which facility io supplies the demand for the least

cost. The value Aj g€ Ty is the second smallest transporation cost
o

for customer j.

Theorem 14. If max z (Aj - cioj)xi j Z_fio . then the

0 <x. .<D, JeT, o
13- 3 o

optimal solution value for (P) is not affected by setting yi =1,
o]
The knapsack problem in the theorem statement gives a measure of

the transporation cost savings which can be realized if facility io is

opened. If this saving is larger than the fixed cost fi , then the
o

facility may be pegged open.
AK show that Theorem 13 dominates Theorem 14. Specifically, if Y,
o
can be pegged to 1 via Theorem 14, then it can always be pegged to 1

via Theorem 13, but not vice versa. Both theorems allow one to peg

facilities open if a particular test is passed. For the Ellwein test a

102

T e

i kb o o el

transportation problem is solved for facility i. The (AK) test on the
other hand only requires a continuous knapsack to be solved for each
facility i, Computationally then, the (AK) test is more attractive
even though it is a weaker test.

We now present a result which tightens the constraint structure of

A .. .

(P). LetQ. = (jle, .=minc, andc, , # min c .}, and
o ioJ i i3 ioJ i;‘io +J
L, Qmin {z Dj 0 si }. If Qi = @, then define f D, to be zero.
o jeQi o o jeQi

o o

The index set Qi denotes those customers j for which facility i° has
o

the unique smallest transpoxtation cost over all facilities. Let

{x*,y*) be an optimal solution for (P).

Theorem 15. It the constraint [x, ., < S, Yy is replaced by
jeJ "o oo
Ly, < ¢ x, ., <S,vy., , the optimal solution to (P) will ..ot be
i - i3 —71i71
oo JeJ o o o
affected.
Proof: If y; = 0 the two constraints are equivalent. For y; = 1 there
o o]

are two cases: a) I x* ., =S, andb) I x* . < S, . If a) holds,
. i3 ’ i3 i
3:J "o o] jed o o

the two constraints .re equivalent. Only case b) remains. We will

show that [x* . > L, ., We assume [«* . < L, . Recall that
: i])J— 1 . 1] 1
jed To o jed o o]
L, =mi] S. }. For some j . we must have x* . D,
i n{'l‘. Dj'l} o JOCQ]. f <Jl
o 3eQi o o o“o o}
o)
since otherwise we would have x; 3 = I Dj > L, So for
0] - 1 °
JeQi o JsQi o)
o o}
x; ., <D, 3 an i1 such that x* , > 0. Now by transferring one unit
oJo Jo 10
of flow from x* . to x* . , we clearly remain feasible, but since
J 1]
170 o o
je@Q wehavec, ., < c, . , and so the modified solution is not only
° 1o 1o o lljo

feasible, but it also has a smaller objective function value.

Contradiction. ||

103

e i s, e e e vt I

PO

TRTRYY fadianad LAt 2 TRRTTIE TV

This result allows us to put a lower bound on the throughput of
any facility in an optimal solution to (P). By adding this lower bound
on throughput, we theoretically tighten the primary relaxation (;) 0

However since [;., = Sy ¥Wiel, andsincel, <S, Vi ¢I, we
jed ij i i-="1
see that this added restriction on throughput has no effect on (P).

Nonetheless, it can be used to advantage for other relaxations which

are tighter than (P).

another resuit allows precedence relations of the form Y, £ ¥y to

be added to (P). Such a constraint implies that: a) if Y, = 0, then

s = = = A =
y, =0 ,o0rb) if y, =1, theny, =1. LetV, {j|clj T;rzx cij} and
5 for each j ¢ V,, let). ! min ¢,. . Define x . to be an optimal
] 1 ij 1j
] idl,2
A
: solution to v(E) = max f max {0 , clj - czj}-x1j
0D «x,.<D. jeJ
H3= %y)
I x,. < S
. =112
jeg 1
i)
Further, define v (L) = max I (A, = c..)x._.
0 <x..< D, jeV] 137713
=13~ 73 1
I X, . <S. =~ L x,.
jevl 1 1 jed 13

The value V(E) is the maximum added transportation cost incurred if

facility 1 is used in place of facility 2 in any facility design. The

value v(L) is similar in meaning to the term in Theorem 14. It is a

reasure of the savings in transportation cost if facility 1 is opened,

and facility 2 is closed. Let (x*,y*) be an optimal solution for (P).

IR P TRV

3 - < i
Theorem 16, 1If S, 25, and f, + v(E) - v(L) £,, then V5 1< yi in any

optimal solution to (P). Hence the constraint Y, < y, may be added

B e s

to (P).

-

104

—atarala

e

PRIy

i i

L P 3 W O e)

AP o

bl

L

GO S i b o 2 o

bachubi bl et s Ligiad doaitanile o L L ih bt o i A Calio bt oal o Laie i k)

Proof: Assume not. Then yI = 0 and ys =] in an optimal solution to

(P). We will show that v(Plyl =1, y,=0) < v(PIyl =0,y =1) in

2

order to gain a contradiction. Suppose that we have an optimal solution,

(x*,y*), for (Ply1 = 0, Y, = 1) what changes occur in the optimal

solution value if we now set yl =1 and Y, = 0 ? Since S1 > S, we may

2

-~

= x* = i i
let xlj x2j and x2j O ¥ j < . This merely reassigns all flow

emanating from facility 2 to emanate now from facility 1. All other

components of (x,y) will be set equal to tl.e corresponding values in
(x*,s*), Clearly this modified solution is feasible. Now Vv(E) is the
maximum additional transportation cost incurred by the switch of

facilities. Note that 52 is used in the knapsack constraint for v(E),

since S2 is the maximum amount of throughput which can be handled by

facility 2 in any feasible solution. The value v(L) is the minimum

amount of transportation cost which can be saved by opening facility 1.

Note that (S1 - I xlj) is used in the knapsack constraint for v(L),
jed
since it is the maxirmum amount of throughput for which transportation

savings can be assured. Observe that the v(L) calculation is closely
related to the calculation in Theorem 14 with the additional stipulation

1
(P|y1 =1, Yy = 0). By combining the relevant terms, we have

on V., and xj which excludes i = 2 from consideration since Y, = 0 in

f1 + v(E) - v(L) 2 f2' If inequality holds, then a feasible solution

exists with objective value less than v(Plyl = 0, Y, T 1.

Contradiction. |

105

lag dean

el s

L e e

La e

Observe that this result requires the calculation of only two

continuous knapsacks for each pair of facilities. Thus the computational
burden is light. We note, however, that if a constraint yi < yk were
added to (P), the transportation structure of the problem would be
destroyed. Nonetheless, these types of constraints may be added to
other relaxations, and may also be used in conditioral pegging and
penalty tests.

We shall now give a relaxation which is at leact as strong as (;)
in objective value, and which generally yields stronger penalties.
Consider the following Lagrangean relaxation where the demand constraints

are placed in the objective function:

min Php Ci %, + I fiyi + I A (D, - L xi.)
xijlo iel jeJ A e jed) jer M
et I x, <S8y Viel,

jer 3

or equivalently

£ A.,D, - max I (- ci.)xi. - L fiyi
jeg 1 x;;2 0 iel jeJ 31 e
X yi=0,1
(LGRl) I x.. < Siyi vierT,

jez
This is a valid relaxation and it is easily seen that v(P}) > v(LGR)I) >
v(P) if optimal dual multipliers, X, from (P) are used. We mention
that if a transportation algcrithm is used to solve (P) (the yi's
having been substituted out of the problem), then the dual multipliers
for the LP formulation of (P) must be recovered from the optimal dual
multipliers of the transportation formulation. The recovery is not
difficult to accomplish, consisting only of elementary transformations

for a number of special cases. These transformations yield .

106

ke

g

e, i, i Badidhin s

e R L e e

o

£k crai s micnes MNP it & Lid b o winhiais costniubAuciindinby ol SR B i b bg s s ot 5 bt B i b e T ool bt S

Unfortunately it is often the case that v(LGRi) = v(P). Thus, here

e SRR

the Lagrarngean relaxation is no stronger than the continuous relaxation.
However, there are at least three different calculations which generally

tighten the relaxation measurably.

The first is a simple improvement in the Xs. Specifically, set

A, = max I. c, .} ¥ J where c is the second smallest
J { J ! lzj} j € izj 4

ransportation cost for customer j over all available facilities.

This adjustment is intuitively appealing since one would envision the 4
cost of increasing a customer's demand by one unit to be the transport- E
ation cost from the second cheapest facility which serves customer j.
It is this economic interpretation which leads to the definition of

-

Aj . Emwirically, this choice of)\ has been effective in tightening

the Lagrangean relaxation.

[The second improvement is the addition of the constraints:

Liyi < I x,, ¥ieglI ¢to (LGRi) where Li is the lower bound on
; jed
throughput for facility i as given in Theorem 15,

The third improvement is to append the constraint:

z Siyi > I D, to (LGRi). This constraint forces feasibility
iel jed

of any facility design by requiring that sufficient facilities are

o Tv——ry

opened to handle the total demand. Of course the customer demand

constraints may still be violated in (LGR?) since they have been relaxed.
By combining all three improvements, we have the following

tighter relaxation:

107

ORIPRTCr ¥ P T NGO W TR PRT LU GV S0 W DNy

Cab

ZiD.-max N E(;‘.-c)x = RN
i
jog I3 0 <4< D, el jeg 4 41 4
; yi-O,l
(LGR.) Ly < f x < S,y Viegl
2 = S
i‘i jed ij i°i
I sy,> L D
iel ks jed 3

While this relaxation may appear to be difficult to solve efficiently,
we shall show that it is not. By projecting on vhe space of y variables,
we see that the optimization over the x variables can be carried out

indeperdently. Clearly if yi = 0, then xi 3 =0 vjed. If yi =1,
o

= _ o _ o
then x, ., = x, . ¥ je¢ J where x, . is an optimal solution to:
i3 i) 1]
o o o
i ,)) = max -f, + ¥ (A, -c, .)Ix,
° 0 <x, .< D, 1o jeJ J loJ 1oj
— 1,7)

Hence, for each i € I a continuous knapsack is solved to obtain v(i,)).

Then the following problem is solved over y:

max z v(i,A)yi
v.=0,1 iel
1
(F) I S;y; > [D,
iel jed

Probleny (F) is a O-1 knapsack problem in y which may be solved very
efficiently by the methods of chapter V. Let } denote an optimal
solution of (F). We note that geuerally the knapsack has fewer than
|I|free variables, since if v(i,;) > 0 we may iet §i = 1 in any optimal

solution to (F). Thus, in orde. to solve (LGR;) we first solve a

continuous knapsack in x,

L () for each facility io. Then we use the
o

108

Sl e in

SRS R P SPy

e~

Qi st Suliasciak pals

e i/ aui i i d s o it da i d Y T Lt diaiig s gy it et ot ik o i 00 B de Do Al et 4 T rp b iasaalosriotuaiis g T T

solution values for these knapsacks to solve a 0-1 knapsack in y.

Note that penalties may be easily calculated for the y variables.
Yor example, suppose ;i = 1 in (F). A penalty for y, = 0 may be found
by solving (F|yi = 0) or (FWyi = 0) where (F) is the continuous relax-
ation of (F). Thus (F) is a continuous knapsack. Clearly, at a given
node in a branch and bound tree if v(?]yi = 0) > z*,where z* is the
current incumbent value, we may set e 1 in all successors of that
node. Further, these continuous knapsack solutions may be used in
choosing the next branch variable at a node. Specifically, one may
order the yi variables in decreasing order of Pi Q max {0 ,
|v(F|yi =1 - ;i) - v(F|yi = ;i)]} . The branch variable is chosen
co be io = {ilmix Pi} . If a LIFO priority scheme is used, then one
would place (CPIyi =1 - ;i) and (cP| 2= ;i) in the candidate

o o s o o

list in that order. Thus the yi = yi branch would be examined first.

o o
We shall now state an efficient algorithm for (P). Let KO(KI) be

the index set for Y; set to 0(l). Let K2 4 RS KO = Kl .

Algorithm I:

1. Set Ko = Kl =g, K2 = I, and let z* be a large number.

2. Forvice K2 perform the pegging test of Theorem 14. 1If
successful, set ¥y = 1 and set K, = Kl U {i}

3. For vi e K, perform the pegging test of Theorem 13. If

2
successful, set y, ™ 1 and set K, =K U {i}.

4. 1Initialize the candidate list to consist of (P|yi =1 ¥icg Kl).
Call this problem (CP), and go to 9.

5. Stop if the candidate list is empty: if there exists an incumbent,

then it must be optimal in (P), otherwise (P) has no feasible

109

solution.
6. Select a proolem (CP) from the candidate list using a LIfO rule.

Reset Ko, Kl to coincide with the restrictions of (CP). If BND(CP)

exists, and if BND(CP) > z*, go to 5.

7. For v ice K2 perform the pegging test of Theorem 14. If successful,

set y, = 1 and set kK, = Kl U {i}.
8. Forvie K2 if b Sy < z Dj , then set Y, = 1 and set
lexlUKZ-{i} jeJ
K, = Kl U {i}.

9. Let (CP) be replaced by (CP|yi =0, 1c¢€ KO; y; = 1, 1 ¢ Kl). Solve
1 (CP) as a transportation problem getting a solution (;};) .
10. If (CP) is infeasible, go to 5.
11. If v(CP) > z*, go to 5.
12. If (x,y) is feasible for (CP), go to 21.

13. If v(CP) + B (1 -y,)f, <z* go to 22.
. = i i
i: O<y.<1
" i
14. Solve (LGR;) corresponding to (CP) getting a solution (x*,y*).

15, If v(LGR;) > z*, go to 5.

16. Calculate penalties Pi by solving (f]yi =1-v*) Vic¢c K2.
S Py

A

B o7, : i o+ * L=yt K 4 =

1 7 For Vie K2 if Pl v(LGRz) > g*, set y1 yl and set y;

4 Ky* Ui}, If a y; has been pegged to 0 in this step, go to 19.
i

Otherwise if a Y has been pegged to 1 add (CP|yi =0, 1ic¢€ Ko;

] y, = 1, ic¢ Kl) to the candidate list and go to 6. If no variables

have pegged to 0 or 1, go to 18.

4
' 18. Find i_ = {i|max Pi} . If there is a tie, break it arbitrarily.
1eK2
: Add the problems (CP|yi =1 -y*) and (CP|yi = y;) to the
4 o] o o] o
K candidate list. Associate the value BND(CPIyi =1 - y;) =
o o

] 110

fap il i

P, + v(LGRg) with (CP|yi =1 - y;) ard go to 6.
o

i
o o

19. ForVicKzif z SR.(X Dj,setyi=1andset
| lexylz-{i} jed
Ky =k Mk
20. Replace the current (CP) by (Cl>|yi =0, 1ic¢ KO; yi =1, i ¢ Kl) 5
For ¥ j £¢ J let A\, =max {A. , ¢, .}. Go to 14.
]] 1,]
21. An improved feasible solution has been found. Set z* = v (CP) and
reco.d the associated solution (;,;) as the new incumbent. Go to 5.

22. BAn improved feasible sclution has been found. Set z* = v (CP) +

T (1-y)f . IfO-y, <1, sety. =1, and record (x,y)
= it i i
i: 0<yi<1

as the new incumbent. Go to 14.

In step 2 we perform the continuous knapsack pegging test of
Theorem 14 before the pegging test of Theorem 13. While the former
test is weaker *than the latter, computation time is generally much
smaller. 1In step 7 the pegging test of Theorem 14 is used before
the primary relaxations are solved. This is done since the pegging
test is independent of the primary relaxation solution, and in fact
does not even depend on an incumbent value, z*. Hence if a variable
can be pegged to 1 via this test, the primary relaxations will be
tightened. 1In step 8 a simple conditional feasibility test is invoked.
This test assumes that Y, is set to 0. If total demand cannot be

o

satisfied by opening all facilities in K - {io}, then y, may be pegged

i,

to 1. In step 9, all Ys ic K2 are substituted out of (—Cf;) , and the

2

objective function and constraints are modified accordingly (as explained
earlier). A transportetion or network algorithm is then used to solve
(C—P) . 1ln step 13, the fractional ;i s in the transportation solution

are rounded up (thus assuring integer feasibility) in an attempt to

111

PRI TR VTR TrC VP Ot Wt LGPV DR T

P e

T Ty TSI, P

generate an improved incumbent. Of course, even if this rounded solution
results in an improved incumbent, the current candidate problem is not
fathomed. 1In step 17 a simple conditional test is used to try to peg
facilities open or closed. If a facility is pegged closed, then the
conditional feasibility test in step 18 is invoked, since by pegging a
variable to 0 this test is strengthened. Then dual multipliers are
improved in step 19, and the Lagrangean relaxation of step 14 is solved.
Note that the transportation relaxation is bypassed in this case. This
is done since, generally, the transportation relaxation takes much
more computation time than does the Lagr.ngean relaxat on. If no
variables are pegged to 0 or 1 in step 17, a branch must be made. The
branching criteria is to choose that variable with the largest penalty,
Pi. The two resulting problems are placed in the candidate list such
that the most promising branch is examined first underhthe LIFO rule
of step 6. In step 18 note that a bound of Pi + v(LGR;) is associated
with (CPI'/i =1- y{). When this candidate problem is selected
from the cagdidate ligt, this bound is compared with z* to see if it
may be "automatically" fathomed.

The test problems used were a subset of the test problems of
Kuehn and Hamburger [1963) and Ellwein [1970]. These problems have
served as benchmarks for researchers studying the capacitated facility
location problem. As previously mentioned, AK have devised a new
branch &nd bound algorithm which has dramatically reduced computation
times for this class of test problems.

We mention that in our computer implementation we have not

incorpcrated the results of Theorems 15 or 16, and (Eﬁwas used instead

of (F) in the calculation of v(LGRz). In Table M, our results are

112

P

Ay T o

T T faddciarin ol picen Y Y il

compared with the published results of AK. Care should be taken in
1 g comparing times for at least two reasons. First, different computers :
were used. Second, and more importantly, different transportation]
1 codes were used. Since transportation code time often accounted for |
E over 90% of the total computation time in our implemerntation, a more
realistic comparison would be the number of transportation problems 3
solved. In support of this, we note that AK used an out-of-kilter code |

for certain problems and a primal-dual code for others. Both of these]

e
P

codes had a complete reoptimization capability. Our code, on the other

1 hand, had only a limited reoptimization capability. Specifically, given

it iy b i i

an optimal solution to (EE), reoptimization was only possible when a

variable Yy was set to 1. Reoptimization was not possible when y, was

set to 0. As further evidence of the reoptimization capability, AK {

soilved a 25 facility by 50 customer problem using the test of Theorem :
14, and making one branch in about .2 seconds. With our transportation i

code these same computations took over 5 seconds. Generally, we

observed that for easy problems (15 or less transportation problems

solved) the results were quite similar. However for more difficult

e R

e T

problems, our algorithm generally required the solution to fewer

4 transportation problems.

] B. An Interactive Approach for the Parametric Capacitated Facility

Location Problem

In this section we consider the general parametric capacitated

facility location problem, 7). The approach which we shall propose
applies generally to 7), however, the test problems which we have studied

: vary only one of the possible parameters at a time. Specifically, we

113

s OB i

Loebiian it 4 L st il ool e i DB e S L A e

have tested problems with varying demand only, varying fixed costs

only, and varying transportation costs (ci) only. Because of the

3
computer cost involved in solving capacitated facility location
problems, we chose not to run test problems for the continuous parameter-
izations in the objective function and in the right hand side.

The plan of this section is to investigate the problem dependent
techniques of chapter III, and the factors affecting the scheduling
of solution priorities in chapter 1V. Then an interactive approach for
solving 7) is proposed, and computational experience is cited.

Reduction techniques for 7) can be quite effective. The pegging
tests of Theorems 13 and 14 should be used for each (Pk). Note that
if a parameterization involves only the fixed costs, then both pegging
test calculations need only be done once. This follows since the
calculations remain the same, regardless of the value of the fixed
costs. All that must be done is to compare the calculated figure with
the fixed cost for each k = 1,...,K. For other parameterizations the
test of Theorem 14 may be done separately for each k = 1,...,K, since
all that is involved is the solution of a continuous knapsack for each
facility i for each k = 1,...,K. The test of Theorem 13, on the other
hand, involves solving a transportation problem for each facility i
for each k = 1,...,K. In order to take advantage of efficient reop-
timization techniques for this test, cne could solve the K transportation
problems for Yio say, as a group, reoptimizing the optim.1 tableau from
k =1 for k = 2, etc. This reoptimzation may reduce total computation
time for this test. Naturally, the results of Theorems 15 and 16 may

also be used for each k = 1,...,K. In both cases the computational

114

s
4

burden is light, even when repeated K times.

Feasibility recovery techniques have turned out to be very
important for this class of problems. In fact for about one half of the
parameterizations tested, the feasibility recovery technique found an
optimal solution for the next problem in the parameterization. With
the use of th.- solution value as an upper bound, it was possible to
terminate the branch and bound search without any branching whatsoever!
We shall explain this behavior in detail later. Clearly, if the
parameterization involves only the objective function, there are at
least two methods for generating a feasible solution for (Pz) from
an optimal solution, (x*,y*)l to (Pl)' First, since (x*,y*)l is feasible
in (P2), we may simply cost out that solution using the objective
function for (Pz). Second, by using an optimal design of facilities
for (Pl), we may solve the associated transportation problem with the
objective function for (P2). This latter method was used in our computer
implementation. If the parameterization involves the right hand side
and (x*,y*)1 remains feasikle for (Pz), one may also solve the associated
traaisportation problem using the optimel design of facilities for (Pl).
If (x*,y*)1 is not feasible in (P2), then one may, for example,
selactively open enough facilities in addition to the open facilities
in the optimal solution to (Pl) until feasibility is assured, i.e.

L S, > I D, . Then the associated transportation problem can
irg.=l Y7 je3
i
be solved.
Bounding problem reoptimization techniques can also be very

important. In general at a fathomed node for (Pl), one could take the

optimal ¢ _ansportation tableau and use it as a starting tableau for

115

P g R

——

Sy

optimizing the corresponding candidate problem for (Pz). If an inter-
active procedure is used, one could store the optimal tableau for the
candidate problem on disk or tape, and then read t'iis information back
into core when the candidate problem for (Pz) at that node is considered.

Finally, wide range bounding techniques may be empl?yed at a given
node. There are at least two possibilities. First (LGR;) may be solved
for (Pz) using the i from the transportation problem solved at the node
for (Pl). Second, all constraints could be absorbed into the cbjective
function using the appropriate dual multipliers from the transportation
problem solved for (Pl) at the node. However, since both of these
relaxations are of moderate computational expense, the former upproach
(which is stronger) should probably be used.

We now turn to the factors affecting the scheduling of solution
priorities. Tightness of the primary relaxation for a given (Pk) has
been found to be dependent on one main characteristic. We assume for
this analysis that the ratios fi/Si are equal for v i ¢ I. Let (;;;3

be an optimal solution for (Fk). 1f 7 fi'y'. is "close" to I £y,

iexr 7t iel
where (x*,y*) s an optimal solution to (Pk)' then the relaxation
will be relatively tight. Conversely, if .Z fi;; is much smaller
than .X fiy;, then the relaxation will be1521ative1y loose. Now if
fixedlzists are relatively high with respect to transportation costs,
then facilities which are open in y* will probably be operated close
to their upper capacities. The corresponding relaxation will probably
be tight. If, on the other hand, fixed costs are relatively low with

respect to transportation costs, then facilities which are open in y*

will probably be operated at something less than their upper capacity.

116

M s bl i B b e cuii s e iR L

In this case the continuous relaxation will probably be looser. Still

another way to look at relaxation tightness is the difference between

. This difference is manifested costwise

L * Yy, =
Siyi and I Sy, L Dj

icl jex 1 jed

BT T g TR e —— e [

in the difference between ! f y* and I f.;. . By using these 4
i‘i i“i 3
iel ier

intuitive relationships, one can often "predict" the tightness of the
continuous relaxation as a function of the parameterization. We | -ve i
the following relationships: ﬁ
3
Type of parameterization Tendency of continuous relaxation ;
* increase cij's tighten i
+ increase fi's loosen |
b
* increase S, 's loosen if I Siy; - I D, is small;]

- iel jeJ
tighten if large

. increase D.'s loosen if I S.y' - I D. is small;
3 . 171 o
iel jed
tighten if large

Note that these relationships are also dependent on the relative
importance of transportation costs which in turn are affected by the

number of facilities which are open in an optimal solution. Thus total

-

transportation cost is higher if fixed costs are high, since this
implies that fewer facilities are open in an optimal solution. So

; we see that the transportation costs have an effect opposite that of
fixed costs on the tightness of the relaxation. This is reflected in

the display above.

The behavior of individual facilities in an optimal solution as a

function of certain parameterizations is closely related to the analysis
above. For example, suppose all fixed costs rise by the same amount. ?

This has the qualitative effect of making the opening of each facility

less attractive. Coupled with the fact that the total transportation

1
. 3
| i

’ 117

]
A 7
1 e N P
i 3 i g W P OP———— e e e) 3
. : —_ : 4 pr— ’ - J

e

—

T

T

cost. for any given facility design remains the same for both sets of
fixed costs, it is easy to see that this rise in fixed costs is
equivalent to tightening an implicit constraint on the number of open
facilities in an ortimal solution. Similarly if demands rise, then

one would expect acditional facilities to be opened. A rise in
transportation costs would be accompanied by a tendency toward opening
more facilities alsio. Of course for certain "local" parameterizat'ons,
such as an increase in one fixed cost or an increase in certain
transportation costs, tendencies of specific variables can be identified
more precisely.

The persistence of scratch trees for the parameterizations which
we tested was generally very good. Such behavior would seem to be
plausible when one considers the size of the decision space for our
test problems. The number of facilities considered ranged from 10 to
25, while the number of continuous variables ranged from 200 to 1250.
With a decision space of dimension 25 or less, and the empirical obser-

vation that the majority of facilities are "important", it seems plaus-

ible that they remain "important" for most parameterizations of interest.

If this is the case, scratch trees should be rather stable since "impor-
tant" variables are branched on first in our algorithm. This has been
borne out empirically, and indeed this bodes well for using a serial
approach with an initial separation gleaned from the previous (Pk).

We shzll now present a method for solving problem 7). Due to
the relatively high computer cost for solution of reasonable sized
problems, we chose an interactive approach. That is, (Pl) was solved
to optimality in one computer run, and then using information from

this computer run, another run was made to solve (Pz). By using this

118

M Doy e T -

J

Bk dhusabcaiannbes da o one i op o) il b ot o his cadeni i et in a an atiaaas i NAEIIR. o T

5
[

interactive approach, closer control over computation time was possible,

and a freer hand in experimentation was permitted. é
A

Algorithm J:
l. Set k = 1. Solve (Pk) by Algorithm I getting an optimal solution, 1

(x‘.y*)k-

2, Ifk > K, stop. If (Pk) and (Pk+l) are relatively monotone, if
their objective turctions are identical, and if (x*',y")k € F(Pk+l) 0

then (x".y")k is optimal in (pk+l)' so let k = k + 1, and retur.:

to the beginning of this step.

4
¥
3
f 3. Setk=k +1. If k > K, stop.
{ 4. Use a feasibility recovery technique on (x",y")k_:l to find a good !
i feasible solution for (Pk). Call it (x"',y"')k and its corresponding
*
value zk.

5. Invoke Algorithm I for (Pk) with the following modifications:

a) xreplace step 19 by: "store the current index sets l(o, Kl, KZ'
the incumbent (x",y*)k, and zl‘('. and return to step 6 of
Algorithm J."

b) replace step 5 by: "stop if the candidate list is empty: if

there e<1sts an incumbent ..t is optimal in (Pk) , return to

step 2 of Algorithm J."

6. Use some modification of the branch and bound tree for (Pk_l) to

form an initial separation for (Pk)' Put this initial separation *
in the form of a candidate list, and go to step 6 of Algorithm I. b
when the stop condition in step 5 of Algorithm I is satisfied, go 4

[to step 2 of Algorithm J.

In step 2, since 7) is a general parametric problem, we require

’ 119

] b,
L e —) J
: s b mttban ‘ R . B bbb b ahiiit in i s -

identical objective functions. However, this can be relaxed for certain

- E
Py

objective function changes. 1In step 4 the particular feasibility

T e

recovery technique will depend on the type of parameterization. In

step 5 a modification of Algorithm I is used in order to perform tha

4 pegging tests of Theorems 13 and 14, and other pegging tests based on
the Lagrangean relaxation (LGR;) for (Pk)' This procedure continues

i until eitner fathoming occurs (in which case (Pk) has been solved), or

until a point is reached where no more pegs can be made. When no more

pegs can be made, control passes to step 6 of Algorithm J. 1In step 6

o

an initial separation based on the branch \d bound tree of (Pk_l) is
generated. The reasoning behind this approach is as follows.
Generally, the pegging tests of Theorems 13 and 14 are quite
effective in Hegging facilities open at the root node. Hence these
tests ¢re performed for each (Pk) in crder to reduce the number of
free facilities in the problem, and hopefulily to reduce the number

o branches made during the branch and bound process. A modification

of ihe branch and bound tree for (Pk-l) is used to form an initial
{ separation because of the pegging procedure in step 5. The modification
cai. best be explained by referring to a typical branch and bocund tree

for (Pl) (see figure below).

p
e} —a
Ye b
=] ¥ ~
Yy
- \ -
j Y:!El/ i+ FE 0 (s} -
= = =
i Y3 ¥3 a 0o Y1 o
| TR R RO &
,‘1 = ! = |
Y P b y7 =0 Y, ‘
=O / \0 y
Branch and bound tree for (Pl) Frontier of fathomed nodes for (P)
(denoted by o)
12¢

Note that vertical lines refer to pegged variables. That is,

the opposite branch is automatically fathomed. It is important to
realize, however, that these opposite branches are part of the frontier

of fathomed nodes as depicted in the figure above. If this full frontier

bt ot SNl L o ekl

& were used as an initial separation for (Pz). the number of problems in
the initial candidate list would be 13. However by "collapsing out"
the pegged variables from the tree, we may reduce the frontier to 4.

E See the figure below.

: A 7
Y =] .Y 0 ‘
2 /n<\ o "2 Jd]

yfﬁﬁ’ o Y371 (/ ™o
vg™0 7\ Yerl ar

"Collapsed” branch and Frontier of fathomed

bound tree for (Pl) nodes for "cvllapsed"
L tree (denoted by ¢)

While such a manipulation may appear contrived, we offer the
following explanation. In the serial approach, which uses the frontier
of fathomed nodes, there is an underlying supposition. It is that in
a branch and bound tree if a node cannot be fathomed for say, (Pl),
then it probably cannot be fathomed for a closely related problenm,
say, (Pz). Conversely, if a node is fathomed for (Pl), then it likely

will be fathomed for (P2) also. A variable which is pegged to a

i certain value can be thought of in an analogous manner. If yi can be

pegged to 1 in (Pl) at a given node, then it can probably be pegged to

1l in (Pz) also at that given node. Hence, instead of considering the
i full frontier of fathomed nodes for (Pl), we may eliminate the pegs 3
! from the tree, and attempt to peg variables at the root node of (P2) as

in step 5 of Algorithm J. :

i 121

{
L‘u&: deendd clits fo i . bbb Caait e b o b B S il S b b AN et bttt e —— -

We note that other methods for reducing the frontier of fathomed

- 2T

nodeg,while still maintaining a "good" initial separation, are possible.
However, we shall defer discussion of them to chapter VIII.

As a final comment on Algorithm J, we submit that the ordering of
the initial candidate list in step 6 can be very important. We present
three orderings which have proven to be effective:

a) Order the candidate problems by the inverse order in which
they were fathomed for the previous problem. That is, the
candidate problem fathomed first is placed at the end c¢f the
list, so that under a LIFO rule, it will be examined first.

[b) Order the candidate problems in decreasing order of their

relaxation values for the previous prorlem. Thus, under a
LIFO rule the most promising candidate problem will be
examined first.

¢) Modify the ordering in a) or b) by placina last in the list
the candidate problem at which an optimal solution for the

] previous problem was found.

In our computational studies, ordering b) coupled with modification c)

was generally the best of these orderings.

i Test problems were taken from the problems in Table M. For

ﬁ example, problems 1, 2, 3, and 4 differ only in fixed costs, as do 6,

¥ 7, 8, and 9, and 16, 17, 18, and 19. Other problems were generated by
increasing all customer demands by some percentage (i.e. Dj + 5%), while

still others were generated by increasing all transportation costs by

some percentage (i.e. cij + 10%). Algorithm J was compared with a

traditional approach which fcllows.

T T T TP W= T TW =¥ Py mgrpey-=

122

o ——

e T r——

T

Algorithm K:
l. Set k = 1.

2. Solve (Pk) by Algorithm I getting an optimal solution (x*,y*)k.

3. Set k=k +1. If k> K, stop.

4. Use a feasibility recovery technique on (x',y')k_1 to find a good
feasible solution for (Pk)' Call it (x',y*)k and its corresponding
objective value zi. Go to 2.

A comparison of the two algorithms is given in Table N. Note that
the computation time includes the time for the Theorem 13 pegging tests,
but that the number of transportation problems solved does not include
the (|I| 4+ 1) transportation problems solved for this pegging test. We
mention that the computation time for this test is much higher than it
would be if a reoptimization capability were available in our trans-
portation code. Because of this shortcoming, the savings realized
by Algorithm J over Algorithm K are reduced. Note that in 4 of the 8
parameterizations tested, only cne transportation problem was required
to solve each problem after (Pl). This was due to the fact that the
solution generated by the feasibility recovery technique was an
optimal solution, and that the Lagrangean relaxation penalties were so
strong that many of the remaining free facilities were pegged open or
closed. Then after these pegs were made, the corresponding Lagrangean
relaxation value bounded out.

In conclusion, we see that Algorithm J dominates Algorithm K. For
various reasons mentioned taroughout this chapter, it is reasonable to
assume that this domination can only becone more pronounced as more

difficult problems are solved.

123

i i e BTy b aras o ia wrerereT

00009 0osL

6°6 1T v (074 Sv ST -00s22 -00ST *sT
000CY 000S
I pocT 8€ 9-Z1 £V 44 ST ~-000ST -0001 A
4
3
: 9°1s 8ET 8°L zZ8 0S 14 00521 000ST JeT ;
1°11 61 8° 01 0s ¥4 00SL 000ST Al
b 0°1L 561 0Z1< - 0S T4 00sZT 0005 11 3
vt 4 z v 0s ¥4 00SL 0005 ‘0t 3
1°0T 43 v be £€T 0s 91 00052 000ST °6
8°L LT 9°8¢ €81 0S 91 00SLT 000ST °8
: z°9 1T v 6 0s 91 00521 000ST L
1 0°s 9 2" 12 0s 91 00sL 000ST)
1 <
1 v°8 61 L 61 59 0s 91 00SLT 0000T ‘s i
3
m £€°S 8 9°6 L] 91 00052 000S i
I 9°g 6 £€°6 L 0s 9T 00SLT 000S €
i 6°S 1T Z2°6 L 0S 91 ooszt 000 °Z 3
[8°¥ L Z°01 A 0s 91 00SL 000S T]
m Wty pPaATOS SWTL, POATOS SaIsWO3ISN) SITIT[TORI S3SOD pOXId sorrddang waTqoxd i
5 Te3ol smatqoxd 1e30L sue1qoxd 3o °*ON Jo "oN
g *dsuex] 3o °ON dsuex], 3O "ON
s (16/09¢ WHI) (S9T/0LE WEI)
I mpytxobrvy uy3TIobiy MY

oY

(sT° 30 @ouexzalol A3rTeuwridogns e pIsn I WMPTIOLBTY °"0O/1 EUIpnioxs SPUODS®S UT SWTL)
I wy3iTIob1VY PU® WYITIOBIY NV 3JO uostaedwo)

Al b o

n ! W 21qelL

125

¢ 144 YN N (014 (0] 000S¢ 000S *61
£€°1 (X4 N N (0)4 (0} 4 000ST 000S 8T
11 12 ¥N ¥N (014 0T OSLET 000S LT
vt 6T YN N 0¢ (oR1 00sCT 000S *oT
SWtlL PoATOS AT POATOS SAsWO3Sn) SOTIT[ORI S3S0D PaAXTI seTrddns waT1qoxd
1e3oL sweTqoad Te30L swaTqoId 3o *oN 3o *oN

*dsuex] 3O °ON

*dsueal 30 °ON

(16/09¢ WHI)
I wy3atxobT¥

e

(G97/0LE WHI)
TY3ITIOBTY NV

(pauurTjucd) W 2Tqel

o e e ok L Sk ol

Li9 4 L9 ¥ Steser
£ T z° T - Sv ST $0E+ 3 "3sD "XTd 6T
E z T £ T - Sy ST $0Z+. 3 "3ISD "xTJ *GT
€ 1 € 1 - 34 ST 0T+ 3 "3ISD "X1d Sl “
1 6°S 1T 6°S Ti T 14 ST '3 casD °xud ‘ST .
, &S Lot Sy zL SIERCL |
g 1°2 2] 9°1 62 1t oz o1 000SZ °3ISD °XT4 ‘61 1
i £°1 €C 8° €T 11 0z o1 000GT °*3SD *X14 ‘8T
3 1 12 L 11 11 0z ot OSLET "3Is2> "x14 LT
b1 61 P°1 61 1 0z ot 00621 °"3S0 °x1d4 ‘9T
3 8°1T1 143 9°01 LZ sTe30L
3 v T S°€ €1 S 0s 91 0OSLT °3sD °X1d ‘8
1 9°2z Tt 1°2 8 S 0s 91 00621 "3SD °*x14 ‘L
¢ 0°s 9 0°S 9 T 0S 91 00GL °3ISD °"XTd)
3 ¥ 1T St L8 ve sTe3oL - u
] 6°1 8 1 S S 0s 91 000SZ "3asD °"XId i I 3
: A4 6 21 S S 0S 9T 00SLT °3SD °xX1d ‘€ 3
1 s ¢ 11 ST L S 0s 91 00GCT °3IsD "X14 *Z]
1 8°v L 8°'v L T 0s 91 00SL °3ISD °X1d 1
E:
1 STy, paalos SuITL ‘peatos AST1 SIDWOISND SITITITIOP; UOTIeZTaajaweard wWaTqoxd :
3 1e30L swaTqoagd Te3ol swaTqoig 93eprpued 3o °oN Jo "ON
] ‘dswexl °"ON dsuex] °*ON TeT3ITUI 3O 4
4 92T1S f
(TeuoT3TPRIL) (Te1a95)
3 Wyl TIOBbTVY L uy3TIObTVY ;

(3T 30 adueaatol A3rreuridoqns e pasn suyjltiobie yiod
*16/09€ WAI Ue uo O/I BUTPNIO%® SPUOIDIS UT BWTL)
waTqoId L edo] A3TTToed pejeirtoedeD oSTajsuweied 9yl I0J N pue £ SWITIO6TY JO uostiedwo)

N °oTqel

e i i > s in

vzl 8 _ p-Z1 8 stelor .
L°€E T L°E 1 - 0s 91 %0Z+..0 -dsuexg ‘9
L€ 1 L€ T - 0s 91 0T+.,2 *dsuexy)
0°s 9 0°S 9 1 0sS 9T "o -dsuexy)
0°21 6 6°11 6 sTe3oL ..
9°¢ 1 S°¢ 1 - 0s 9T 02+ . ~dsueay, 1
9°€ T 9°¢ 1 - 0s 91 YOT+¢ -dsue1l, T
8V L 8"y L T 0s 91 TTo *dsuexy T
v°0Z k44 £°8T o€ sTe3oL C
L°s 1T L°S TT 1T St ST 0T+,d spuewag °S1
8°8 44 L9 128 1T 144 ST %S+.d spuewsq ST
6°S 11 6°S 11 T st ST ‘@ spueuaq "GT
£°C1 8 LAK4t 8 sTe3oL c
L°E T L€ T - 0s 91 $0T+,d spuewsq ‘9
9°t T L € T = 0Ss 9T wm+.na sSpuewaqg ‘9
0°s 9 0°s 9 1 0s 9T "a spuewaq)
|ty POATOS SwTL paA10S ST SIJWOISLD SOTJITITOPI UOTIRZTI9jduwered woTqoad
1e30l swatqoxd Te3oL susfqoxd ajeptpued Jo jo °*ON

*dsural °ON ‘dsuex], °oN TeT3fuUI 30

9ZTS
3 Wyl TIOLbTY £ w3 TIObTVY

(panuT3uod) N oTqeL

127

SR i e o e i g et

ot ek adbaiii Lol

VIII. EXTENSIONS TO THE GENERAL PILP AND AREAS FOR FUTURE RESEARCH

A. A Solution Method for the General PILP

In the preceding three chapters we have analyzed PILPs for special
problem classes. In this section we extend what we have learned to
the general PILP:
8) For k =1,...,K solve:
min (c + fk)x
(P,) (A+D)x>b+r

k

x, integer, j e J

j

where fk' Dk' and r, are conformable with c, A, and b respectively.

Cur goal is to give prescriptions for solving the PILP in an
efficient manner. In chapter IV, three solution priorities were
outlined: serial, lexicographically serial, and parallel. The reader
will recall that only the first two priorities were considered in our
computational studies, since the parallel approach seems to be dom-
inated by both of the other approaches. 1In this chapter we shall
reduce consideration to only one approach, namely, the serial.

The lexicographically serial approach (l.s.a.) has one inherent
weakness. It is that individual (Pk) are not solved to optimality in
any preordained order. For the analyst who must solve the genersl PILP,
this could be disastrous, given a limited computer budget. 1In tha
l.s.a. there is no way to monitor or control the amount of computer
time spent on a particular (Pk). In fact, after an inordinate amount
of computer time has been used, it is possible that only minimal

progress may have been realized in the solution of each (Pk).

E.
F
A
A

el o

e D 8 S v o ot

oy g

]

e o

i dag o

i i

PR e

Furthermore, we point out that the primary advantages of the l.s.a.
can be overcome by clever implementation of a serial approach. Two
advantages of the l.s.a. are the small amount of bookkeeping calculations
aid core storage required. However, for more difficult PILPs, the
bookkeeping time becomes insignificant, since the time required for
solving the primary relaxation at each node generally i1s the lion's
share of total computation time. This was manifested in the facility
location problem of chapter VII, where over 90% of total computation
time was devoted to the solution of transportation problems only. For
more difficult problems, computer core limitations impose serious
restraints on the serial approach. This is avoided in the l.s.a..
However by using an interactive serial approach (i.s.a.) as outlined
in ¢ -er VII, node information is stored either on high speed disk
or tape, and hence the core storage problem is alleviated. A third
advantage of l.s.a. is the reoptimization capability from problem to
problem in the PILP, That is, at a given node the optimal bounding
problem relaxation solution for say, (CPl), is used as a starting
point for the solution of the relaxation for (CP2). Oftentimes this
reoptimization technique can realize significant savings in computation
time. This scheme may be used in the serial approach as well, by
simply storing the optimal basis (when LP is used as the primary relax-
ation) for the relaxation of (CPl) on disk or tape. Then, when the
relaxation of (CPZ) is to be solved, the corresponding basis can be
retrieved and used as the starting basis. Of course this retrieval
incurs a setup time, but as pointed out earlier, setup time is

insignificant for more difficult problems. Thus, the advantages of

129

A Akt

s o

i

PN

R

~ MR A i b s v cada g e G sl hasi Yy ™

of the l.s.a. can be neutralized by judicious use of an i.s.a..

We now analyze the i.s.a., and point out the more important
factors in the implementation of such a method. By incorporating the
human factor into the process, not only is closer contrcl in monitoring
the computation process possible, but greater flexibility in solution
strategies can be realized. An i.s.a. allows the analyst to glean
information from the solution process for (Pl) in order to solve (Pz)
more efficiently. There are at least four sources of this information.
They are:

* an optimal solution for (P,)

« root node penalties and a branch and bound tree for (Pl)

+ success of branching criteria in the branch and bound tree

+ relative effectiveness of various fathoming tests,

Each of these sources can be most helpful in planning a solution
strategy for (PZ). In the following few paragraphs we sh2l) analyze
each of these sources.

Various feasibility recovery techniques have been presented for
the special problem classes of chapters V,VI, and VII. For the general
PILP, such techniques may or may not apply, depending on the type of
parameterization. Therefore in order to be assured of flexibility in
the feasibility recovery technique, it may be advisable to have the
analyst apply ad hoc techniques for obtaining a feasible solution to
(P2) from an optimal (or just feasible) solution to (Pl). Such
techniques, of course, can be coupled with a computerized optimization
scheme, for example, where all integer variables are fixed to a specific

value.

130

i G ol sain

i el TS RO

e 3 Gineihan

Sabhaga

ettt

p—

|

itk it ot caas i g Long

The root node penalties and the branch and bound tree generated in
solving (Pl) can be used as a gquide in generating an initial separation
for (Pz). First, consider the penalties generated at the root node for
(Pl). Such penalties are generally calculated in order to choose
branch variables. They may be LP based, or they may be a by-product
of a Lagrangean relaxation. Lagrangean penalties can be
quite a bit stronger, and at the same time require fewer calculations
(Geoffrion [1973)). By ranking the absolute values of these penalties
in descending order, one can get some feeling for the "importan~-" of
the individual integer variables. Such a ranking is valuable since in
a branch and bound process it is preferable to branch on variables
which have large penalties, early in the branching scheme. After (Pl)
has been solved and the root node penalties have been ordered for (Pl),
the root node penalties for (Pz) are calculated and ordered also. By
comparing the orderings for (Pl) and (Pz),one can get some indication
of whether the "important" variables in (Pl) are "important" in (Pz)
also. If this is the case, it is reasonable to assume that the branch
and bound tree for (Pl) will generate a "good" initial separation for

(p,). If, on the other hand, the orderings are quite different, the

2
branch and bound tree for (Pl) may generate a relatively poor initial
separation for (Pz). In this case it may be better to eitler solve
(Pz) with no initial separation, or to use some separation based on
the root node penalties for (Pz) with little or no input from the (Pl)
solution proress.

Considering the case where the root node penalty orderings are

reasonably correlated, a number of possible choices exist for the

131

EPERER O

T ——

s ad

LB abiail ol

ey

G e bt S0t e R oot o ' e e s o

generation of an initial separation. The simplest, of course, is to
use the frontier of fathomed nodes from the branch and bound tree for
(Pl). However, as we have seen in chapters V and VII such a separation
may be rather large. A number of modifications can be made which
reduce the size of the initial separation, while still retaining the
power of the separation. First, variables which were pegged to a
specific value can be "collapsed out"” of the tree (cf. chapter VII.B).
Second, branches which would not have been made if the optimal solution
to (Pl) had been known at the beginning of the solution process can be
eliminated. These additional branches can occur if the optimal
solution value for (Pl) vas not found until late in the branching
process. In this case, the additional branches were made because the
fathoming by value test used an inferior incumbent value. Selected
branches may also be eliminated if the parent node of the branches had
a relaxation value "close" to the optimal solution value for (Pl).
Thus the node was "almost" fathomed, but since it just missed being
fathomed, a branch had to be made. Since our general supposition in
the serial method is that if a node is fathomed for (Pl), it will
probably be fathomed for (P2) as well, we see that it is reasonable to
include nodes which are "almost" fathomed in our collection (and to
eliminate the successor nodes of these nodes from the c.llection).
Still another method for reducing the size of the initial separation
is to use only those branches which are on the optimal path. That is,
the path from the root node to the node where the optimal solution

was found. See figure below.

132

e ey e

D S ST TP O T UG N PP 1Y P P T O AP T v ya . . " L

—

.

o o L)

VRN %
o]

ERE X
6/ "o J 0 d/ \\b d// 0

d// ‘b gptimal solution
at this node

Branch and bound tree for (Pl) Initial separation using
the optimal path only

For the case where the root node penalty orderings for (Pl) and
(Pz) are not well correlated, another initial separation based on the
(P2) root node penalties can be generated. Specifically, we may commit
a number of variables as branch variables using the (Pz) penalty

ordering. See figure below.

Initial separation for (P.)
using root node penalty or¥dering

In this case the left hand branch constrains tlie variable to its
"favorable" value as deduced from the penalties. The variable with
the largest absolute penalty is committed first, the second largest
second, etc.

The relative effectiveness of branching criteria for (Pl) may be
used in formulating the branching criteria for (P2). A measure of
the effectiveness of a branching criterion is the number of "mistakes"
made in the branch and bound process. A "mistake" is defined to be

investigation of the x, = 1 branch first,say, when the x, = 0 branch

133

Cpshoue s s &

contains an optimal solution for (Pl). That is, the branching criterion

indicates that the xi = 1 branch is preferred over the x, = 0 branch,

i
when in fact the xi = 0 branch contains an optimal solution. By

keeping track of the mistakes in a branch and bound tree, one can
identify a threshold penalty value below which the branching criterion
may no longer be reliable. Furthermore it may be possible to identify
specific variables for which the branching criterion is unreliable.

By cateqorizing variables according to their penalty indicators for

(Pl) and (Pz) as well as according to the anticipated effect of the
parameterization on each variable, one can "predict" the reliability

of the (P2) penalty indicator for each variable. The following display
delineates the possible cases. 1In using this display, we assume that

an optimal solution to (Pl) has been found, that the root ncde penalties
have been calculated for (Pl) and (Pz), and that an intuitive analysis
has been made concerning the effect of the parameterization on each

variable. Further we assume that all integer variables are 0-1.

Penalty Indicator Penalty Indicator Reliability of Penalty
for (Pll_ for (le_ Indicator for (PZL
- indicator agrees indicator agrees a) very reliable if
with optimal solution with penalty indi- param. tends to keep
value in (Pl) cator for (pl) variable at same value
b) reliable if opposite
of a)
* indicator agrees indicator disagrees c) uncertain but tending
with optimal solution with penalty indi- to be reliable if param.
value in (Pl) cator for (Pl) tends to change value
of variable
d) very uncertain if
opposite of c)
indicator disagrees indicator agrees e) uncertain but tending
with optimal solution with penalty indi- to be reliable if param.
value in (Pl) cator for (Pl) tends to change value
of variable
f) very uncertain if
opposite of e)
134

Colabodaanra s o

s e b

+ indicator disagrees indicator disagrees g) uncertain but tending
with optimal solution with penalty indi- to be reliable if param.
value in (Pl) cator for (Pl) tends to keep variable
at same value
h) very uncertain if
opposite of q)

By categorizing each variable by its reliability, one is able to
modify the branching criterion in at least two ways. First, a threshold
for variables can be established, below which variables should be chosen
for branching by some other criterion. 8Second, if a reliable variable
and an uncertain variable are being considered for becoming the next
branch variable, the reliable variable should always be chosen. Thus
it is possible to modify branching criteria through the use of root
node penalty indicators for (Pl) and (PZ)’ as well as by intuitive
tendencies deduced from the type of parameterization.

The fourth source of information for making the (PZ) solution
process more efficient is the effectiveness of various fathoming tests.
For example, if some conditional logical tests were ineffective for
(Pl)' then one might consider the elimination of such tests for (PZ).
Similarly, if calculations which attempt to tighten the primary
relaxation generally fail for (Pl), they might be eliminated for (Pz).

In conclusion, the i.s.a. is a very flexible approach which
allows the analyst to modify solution techniques in such a way that

the experience gleaned in solving (Pl) is used to maximum advantage

in the solution procedure for (Pz).

B. Future Research

In this section we give a brief outline of topics in the PILP

area which are fertile for further research.

135

|
|
|
|

ol .

L o aa ik vl

One such area is the study of the optimal solution as a function
of a specific parameterization. We have alluded to this in chapters
IT and III. Hopefully, stronger and more useful results can be devel-
oped for other problem classes which take advantage of the knowledge of
an optimal solution for one problem in order to solve a closely related
problem. Such properties as continuity, monotonocity, and convexity of
the optimal solution (possibly in certain components) and of the optimal
solution value would seem to be worth seeking.

Still another area is the use of other methods such as cutting
planes and group theory either alone or in conjunction with a branch
and bound approach. We have outlined a rudimentary cutting plane
approach in chapter I. It may be that such an approach would be quite
effective. More prcmising, however, might be the incorporation of a
cutting plane capabilitv in a branch and bound scheme.

Third, a parametric capability must be designed for use in commer-
cial ILP codes. An intceractive serial method as outlined in section A
of this chapter would seem to permit relatively simple and inexpens.ve
implementation.

Fourth, it would seem likely that the solution method of chapter
V.D can be extended to certain nonlinear parameterizations where the
optimal objective value is a concave (for minimization) function of 6.

Fifth, we note that techniques for paralleliziag computations
would be most effective in a PILP context. Such an approach would rely
on the implementation of specific computer data structures. Further-
more, the advent of fourth generation computers such as ILLIAC IV which
performs computations in parallel should also have a telling impact on

PILP algorithms.

136

f

N

. .

ahade ol el sa bbbl SN i s e L S o= e e P o MAJ

In conclusion, we surmise that parametric methods in integer pro-
{ vsamming will assume greater importance as ILP solution mmethods improve.
Just as in LP, where parametric analysis has become an expected and
{ useful part of most solution studies, we expect the same to occur in
! ILP, We acknowledge that our study of FILP is just a beginning. The
’ true test of a method lies in its use by those who can benefit by its

availability.

137

N T i B T o S P U PSP PR PP FOS SSPUESY T ePrS

o TR T

BIBLIOGRAPHY

.

% 1. Akinc, U. and Khumawala, B.M., "An Efficient Branch and Bound Algo-
rithm for the Capacitated Warehouse location Problem," Graduate

School of Business Administration, University of North Carolina, 1974. 4

Fv 2. Benichou, M., Gauthier, J.MN., Girodet, P., Hentgds, B., Ribiadre, G.,
and Vincent, 0., "Experiments in Mixed Integer Linear Programming,"

Mathematical Programming, Vol. 1, No. 1 (1971), pp. 76-94. ;

3. Bowman, V.J., "The Structure of Integer Programs under the Hermitian j
[Normal Form," Operations Research, Vol. 22, No. 5 (September-

October 1974), pp. 1067-1080.

q. , "Sensitivity Analysis in Linear Integer Programming,"

AIIl. Technical Papers, 1972.

5. DeAngelo, H.C., private communication, March 1974.
6. Dembo, R.S., private communication, May 1974.

7. Efroymson, M.A. and Ray, T.L., "A Branch-and-Bound Algorithm for
Plant Location," Operations Research, Vol. 14, No. 3 (May-June 1966),
pp. 361-368.

8. Ellwein, L.3., "Fixed Charge lLocation-Allocation Problems with
Capacity and Configuration Constraints," Technical Report No. 70-2,

Department of Industrial Engineering, Stanford University,

August 1970. 3

9., El-~Shafei, A.N. and Haley, K.B., "Facilities Location: Some 5
k!

Foundations, Methods of Solution, Applications, and Computatic.. %

Experience", O.R. Report No. 91, North Carolina State University
at Raleigh, May 1974.

10. Garfinkel, R.S. and Nemhauser, G.L., " The Set Partitioning Problem:

Set Covering with Equality Constraints," Operations Research, i

Vol. 17, No. 5 (September-October 1969), pp. 848-856.

IO P

138

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

and . Integer Programming, John Wiley and

Sons, Inc., 1972.

Geoffrion, A.M., "Lagrangean Relaxation for Integer Programming,"
Western Management Science Institute Working Paper No. 195, UCLA,

December 1973, (Forthcoming in Mathematical Programming.}

. "Distribution Systems Configuration Planning: A
Strategy for Managerial Decisions Through Computer-Based Analysis,"

-

Western Management Science Institute Working Paper No. 21!, UCLA,
September 1974a.

» "A Guide to Computer Assisted Methods for Distribu-

tion Systers Planning," forthcoming in Sloan Management Review, 1974b.

and Graves, G.W., "Multicommodity Distribution System
Design by Benders Decomposition," Management Science, Vol. 20, No. 5
(January 1974), pp. 822-844.

any Marsten, R.E., "Integer Programming Algorithms:

A Framework and State-of-the-Art Survey," Management Science,
Vol. 18, No. 9 (May 1972), pp. 465-491.

Greenberg, H. and Hegerich, R., "A Branch Search Algorithm for the
Knapsack Problem," Management Science, Vol. 16, No. 5 (January

1970) , pp.327-332.

Hammer, P.L. and Nguyen, S., "A Partial Order in the Solution
Space of Bivalent Programs," presented at the 41lst Meeting of ORSA,

New Orleans, Louisiana, April 1972.

Horowitz, E., and Sahni, S., "Computing Partitions with Applications

to the Knapsack Problem,” Journal of the Association for Computing

Machinery, Vol. 21, No. 2 (April 1974), pp. 277-292.

Ingaragiola, G.P., and Korsh, J.F., "Reduction Algorithm for Zero-
One Single Knapsack Problems,” Managerent Science, Vol. 20, No. 4

(December 1973) pp. 460-463.

139

s

21.

22.

23.

24.

25.

26.

27.

28.

29.

Kuehn, A.A. and Hamburger, M.J., "A Heuristic Program for Locating

Warehounes, " Management Science, Vol. 9, No. 9 (July 1963),

PpP. 643-00b0.

Manne, A.S. (ed.), Investments for Capacity Expansion: Size,

Location, and Time-Phasing, The MIT Press, Cambridge, Mass., 1967,

p. 201.

Marsten, R.E., An Implicit Enumeration Algorithm for ithe Set Parti-

tioning Problem with Side Constraints, Pa.P. Dissertation, Univer-

sity of California, Los Angeles, October 1971.

Martin, G.T., "An Accelerated Euclidean Algorithm for Integer
Linear Programming," in R.L. Graves and P. Wolfe (eds.), Recent

Advances in Mathematical Programming, McGraw-Hill, 1963.

Noltemeier, H., "Sensitivitalsanalyse bei disketen linearen Opti-
mierungsproblemen," in M. Beckmann and H.P. Kunzi (eds.), Lecture

Notes in Operations Research and Mathematical Systems, #30,

Springer-Verlag, New York, 1970.

Piper, C.J. and Zoltners, A.A., "Implicit Enumeration Based Algo-
rithms for Postoptimizing Zero-One Programs,"” Management Sciences
Research Report No. 313, Graduate School of Industrial Administra-

tion, Carnegie-Mellon University, March 1973a.

and , "A Pragmatic Approach to 0-1 Decision

Making," Management Sciences Research Report No. 316, Graduate
School of Industrial Administration, Carnegie-Mellon Univeristy,

April 1973b.

Radke, M.A., "A Continuity Theory for Mixed Integer Programming,"
Discussion Paper, Operations Research Study Center, Graduate

School of Management, UCLA, May 1974.

Roodman, G.M., "Postoptimality Analysis in Zero-One Programming by

Implicit Enumeration," Naval Research Logistics Quarterly, Vol. 19

(1972), pp.435-447.

140

Ll e it s st s il b i
L et ' PRV IR VNP RENL T U O E T SRr ST e S SN (e ©

Sk

S

Seaiir

daiidae a0 ke

% e CA Y

i A e s i

1
5

e e S iaria Fa s

TR Y

T

30.

31.

32,

33.

, "Postoptimality Analysis in Integer Programming by ;

Implicit Enumeration: The Mixed Integer Case," The Amos Tuck
School of Busine s Administration, Dartmouth College, October 1973.

Ross, G.T. and Soland, R.M., "A Branch and Bound Algorithm for the

Generalized Assignment Problem," forthcoming in Mathematical Pro-

gramming, 1974.

Sa, G., "Branch-and-Bound and Approximate Solutions to the Capaci-
tated Plant-location Problem," Operations Research, Vol. 17, No. 6
(November-December 1969), pp. 1005-1016.

Wagner, H.M., Principles of Operations xesearch, Prentice-Hall,

Inc., 1969.

e O e |

Stial e i S e

el

141

